Fundamental Quantum Limit to Waveform Estimation

被引:169
作者
Tsang, Mankei [1 ]
Wiseman, Howard M. [2 ]
Caves, Carlton M. [1 ]
机构
[1] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA
[2] Griffith Univ, Ctr Quantum Dynam, Australian Res Council, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4111, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
D O I
10.1103/PhysRevLett.106.090401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a quantum Cramer-Rao bound (QCRB) on the error of estimating a time-changing signal. The QCRB provides a fundamental limit to the performance of general quantum sensors, such as gravitational-wave detectors, force sensors, and atomic magnetometers. We apply the QCRB to the problem of force estimation via continuous monitoring of the position of a harmonic oscillator, in which case the QCRB takes the form of a spectral uncertainty principle. The bound on the force-estimation error can be achieved by implementing quantum noise cancellation in the experimental setup and applying smoothing to the observations.
引用
收藏
页数:4
相关论文
共 26 条
[1]  
[Anonymous], 1983, STATES EFFECTS OPERA
[2]  
[Anonymous], 1992, Quantum Measurement
[3]   Adaptive phase measurements for narrowband squeezed beams [J].
Berry, Dominic W. ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2006, 73 (06)
[4]   Adaptive quantum measurements of a continuously varying phase [J].
Berry, DW ;
Wiseman, HM .
PHYSICAL REVIEW A, 2002, 65 (04) :438031-438034
[5]   Generalized limits for single-parameter quantum estimation [J].
Boixo, Sergio ;
Flammia, Steven T. ;
Caves, Carlton M. ;
Geremia, J. M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (09)
[6]   ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM-MECHANICAL OSCILLATOR .1. ISSUES OF PRINCIPLE [J].
CAVES, CM ;
THORNE, KS ;
DREVER, RWP ;
SANDBERG, VD ;
ZIMMERMANN, M .
REVIEWS OF MODERN PHYSICS, 1980, 52 (02) :341-392
[7]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[8]   Quantum-enhanced measurements: Beating the standard quantum limit [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
SCIENCE, 2004, 306 (5700) :1330-1336
[9]  
Helstrom C. W, 1976, Quantum Detection and Estimation Theory
[10]  
Holevo A. S., 1982, Probabilistic and statistical aspect of quantum theory