Blow-up for the stochastic nonlinear Schrodinger equation with multiplicative noise

被引:69
作者
De Bouard, A
Debussche, A
机构
[1] CNRS, F-91405 Orsay, France
[2] Univ Paris 11, UMR 8628, F-91405 Orsay, France
[3] ENS Cachan, Antenne Bretagne, F-35170 Bruz, France
关键词
nonlinear Schrodinger equations; stochastic partial differential equations; white noise; blow-up; variance identity; support theorem;
D O I
10.1214/009117904000000964
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the influence of a multiplicative Gaussian noise, white in time and correlated in space, on the blow-up phenomenon in the supercritical nonlinear Schrodinger equation. We prove that any sufficiently regular and localized deterministic initial data gives rise to a solution which blows up in arbitrarily small time with a positive probability.
引用
收藏
页码:1078 / 1110
页数:33
相关论文
共 22 条
[11]   On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrodinger equation [J].
de Bouard, A ;
Debussche, A .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (01) :76-96
[12]   Numerical simulations of focusing stochastic nonlinear Schrodinger equations [J].
Debussche, A ;
Di Menza, L .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 162 (3-4) :131-154
[13]  
Falkovich GE, 2001, PHYS REV E, V63, DOI 10.1103/PhysRevE.63.025601
[14]   Asymptotic transmission of solitons through random media [J].
Garnier, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (06) :1969-1995
[15]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[16]  
Gyongy I, 1996, PROBAB THEORY REL, V105, P143
[17]  
KATO T, 1987, ANN I H POINCARE-PHY, V46, P113
[18]  
Konotop V.V., 1994, Nonlinear Random Waves
[19]  
Millet A., 1994, LECT NOTES MATH, V1583, P36
[20]  
Sulem C., 1999, The Nonlinear Schrodinger Equation