Local Modeling Classifier for Microarray Gene-Expression Data

被引:0
作者
Porto-Diaz, Iago [1 ]
Bolon-Canedo, Veronica [1 ]
Alonso-Betanzos, Amparo [1 ]
Fontenla-Romero, Oscar [1 ]
机构
[1] Univ A Coruna, Dept Comp Sci, La Coruna, Spain
来源
ARTIFICIAL NEURAL NETWORKS (ICANN 2010), PT III | 2010年 / 6354卷
关键词
SELECTION; CANCER; PATTERNS; TUMOR;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene-expression microarray is a novel technology that allows to examine tens of thousands of genes at a time. For this reason, manual observation is not feasible anymore and machine learning methods are progressing to analyze these new data. Specifically, since the number of genes is very high, feature selection methods have proven valuable to deal with this unbalanced - high dimensionality and low cardinality - datasets. Our method is composed by a discretizer, a filter and the FVQIT (Frontier Vector Quantization using Information Theory) classifier. It is employed to classify eight DNA gene-expression microarray datasets of different kinds of cancer. A comparative study with other classifiers such as Support Vector Machine (SVM), C4.5, naive Bayes and k-Nearest Neighbor is performed. Our approach shows excellent results outperforming all other classifiers.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 27 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[3]   Selection bias in gene extraction on the basis of microarray gene-expression data [J].
Ambroise, C ;
McLachlan, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6562-6566
[4]  
[Anonymous], 1993, Proceedings of the 13th International Joint Conference on Artificial Intelligence
[5]   Tissue classification with gene expression profiles [J].
Ben-Dor, A ;
Bruhn, L ;
Friedman, N ;
Nachman, I ;
Schummer, M ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :559-583
[6]  
Bolón-Canedo V, 2010, IEEE IJCNN
[7]   A global optimum approach for one-layer neural networks [J].
Castillo, E ;
Fontenla-Romero, O ;
Guijarro-Berdiñas, B ;
Alonso-Betanzos, A .
NEURAL COMPUTATION, 2002, 14 (06) :1429-1449
[8]   Accessing genetic information with high-density DNA arrays [J].
Chee, M ;
Yang, R ;
Hubbell, E ;
Berno, A ;
Huang, XC ;
Stern, D ;
Winkler, J ;
Lockhart, DJ ;
Morris, MS ;
Fodor, SPA .
SCIENCE, 1996, 274 (5287) :610-614
[9]   Consistency-based search in feature selection [J].
Dash, M ;
Liu, HA .
ARTIFICIAL INTELLIGENCE, 2003, 151 (1-2) :155-176
[10]  
DER SD, 1998, P NATL ACAD SCI, V95