Continuous Wave Sum Frequency Generation and Imaging of Monolayer and Heterobilayer Two-Dimensional Semiconductors

被引:51
|
作者
Yao, Kaiyuan [1 ,2 ]
Yanev, Emanuil [1 ]
Chuang, Hsun-Jen [4 ]
Rosenberger, Matthew R. [4 ]
Xu, Xinyi [1 ]
Darlington, Thomas [1 ,3 ]
McCreary, Kathleen M. [4 ]
Hanbicki, Aubrey T. [4 ,5 ]
Watanabe, Kenji [6 ]
Taniguchi, Takashi [6 ]
Jonker, Berend T. [4 ]
Zhu, Xiaoyang [7 ]
Basov, D. N. [8 ]
Hone, James C. [1 ]
Schuck, P. James [1 ]
机构
[1] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Naval Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA
[5] Lab Phys Sci, College Pk, MD 20740 USA
[6] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[7] Columbia Univ, Dept Chem, New York, NY 10027 USA
[8] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
关键词
nonlinear optics; sum frequency generation; exciton; two-dimensional semiconductors; van der Waals heterostructures; confocal microscopy; valleytronics; BANDGAP RENORMALIZATION; 2ND-HARMONIC GENERATION; MOS2;
D O I
10.1021/acsnano.9b07555
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report continuous-wave second harmonic and sum frequency generation from two-dimensional transition metal dichalcogenide monolayers and their heterostructures with pump irradiances several orders of magnitude lower than those of conventional pulsed experiments. The high nonlinear efficiency originates from above-gap excitons in the band nesting regions, as revealed by wavelength-dependent second order optical susceptibilities quantified in four common monolayer transition metal dichalcogenides. Using sum frequency excitation spectroscopy and imaging, we identify and distinguish one- and two-photon resonances in both monolayers and heterobilayers. Data for heterostructures reveal responses from constituent layers accompanied by nonlinear signal correlated with interlayer transitions. We demonstrate spatial mapping of heterogeneous interlayer coupling by sum frequency and second harmonic confocal microscopy on heterobilayer MoSe2/WSe2.
引用
收藏
页码:708 / 714
页数:7
相关论文
共 50 条
  • [31] Patterned growth of two-dimensional atomic layer semiconductors
    Zhou, Hao
    Zhang, Chiyu
    Gao, Anran
    Shi, Enzheng
    Guo, Yunfan
    CHEMICAL COMMUNICATIONS, 2024, 60 (08) : 943 - 955
  • [32] Air Passivation of Chalcogen Vacancies in Two-Dimensional Semiconductors
    Liu, Yuanyue
    Stradins, Pauls
    Wei, Su-Huai
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (03) : 965 - 968
  • [33] Valley-dependent magnetoresistance in two-dimensional semiconductors
    Sekine, Akihiko
    MacDonald, Allan H.
    PHYSICAL REVIEW B, 2018, 97 (20)
  • [34] Two-Dimensional Semiconductors and Transistors for Future Integrated Circuits
    Yin, Lei
    Cheng, Ruiqing
    Ding, Jiahui
    Jiang, Jian
    Hou, Yutang
    Feng, Xiaoqiang
    Wen, Yao
    He, Jun
    ACS NANO, 2024, 18 (11) : 7739 - 7768
  • [35] Dynamical Excitonic Effects in Doped Two-Dimensional Semiconductors
    Gan, Shiyuan
    Liang, Yufeng
    Spataru, Catalin D.
    Yang, Li
    NANO LETTERS, 2016, 16 (09) : 5568 - 5573
  • [36] Doping of Two-Dimensional Semiconductors: A Rapid Review and Outlook
    Zhang, Kehao
    Robinson, Joshua
    MRS ADVANCES, 2019, 4 (51-52) : 2743 - 2757
  • [37] Recent progress in ultrathin two-dimensional semiconductors for photocatalysis
    Wang, Hui
    Zhang, Xiaodong
    Xie, Yi
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2018, 130 : 1 - 39
  • [38] Three-Particle Complexes in Two-Dimensional Semiconductors
    Ganchev, Bogdan
    Drummond, Neil
    Aleiner, Igor
    Fal'ko, Vladimir
    PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [39] Quest for p-Type Two-Dimensional Semiconductors
    He, Qiyuan
    Liu, Yuan
    Tan, Chaoliang
    Zhai, Wei
    Nam, Gwang-hyeon
    Zhang, Hua
    ACS NANO, 2019, 13 (11) : 12294 - 12300
  • [40] Recent progress of exciton transport in two-dimensional semiconductors
    Hyeongwoo Lee
    Yong Bin Kim
    Jae Won Ryu
    Sujeong Kim
    Jinhyuk Bae
    Yeonjeong Koo
    Donghoon Jang
    Kyoung-Duck Park
    Nano Convergence, 10