Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications

被引:66
作者
Chen, Guoyin [1 ]
Wang, Gang [1 ]
Tan, Xinrong [2 ]
Hou, Kai [1 ]
Meng, Qingshuo [2 ]
Zhao, Peng [2 ]
Wang, Shun [1 ]
Zhang, Jiayi [2 ]
Zhou, Zhan [1 ]
Chen, Tao [1 ]
Cheng, Yanhua [1 ]
Hsiao, Benjamin S. [1 ,3 ]
Reichmanis, Elsa [4 ]
Zhu, Meifang [1 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Fudan Univ, Inst Brain Sci, Zhongshan Hosp,Dept Ophthalmol, State Key Lab Med Neurobiol,MOE Frontiers Ctr Bra, Shanghai 200032, Peoples R China
[3] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[4] Georgia Inst Technol, Sch Chem & Biochem, Sch Mat Sci & Engn, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
基金
上海市自然科学基金; 中国国家自然科学基金; 中国博士后科学基金;
关键词
optical waveguide; hydrogel fiber; deep-tissue photothermal therapy; optogenetic stimulation; FABRICATION; PERFORMANCE;
D O I
10.1093/nsr/nwaa209
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydrogel optical light-guides have received substantial interest for applications such as deep-tissue biosensors, optogenetic stimulation and photomedicine due to their biocompatibility, (micro)structure control and tissue-like Young's modulus. However, despite recent developments, large-scale fabrication with a continuous synthetic methodology, which could produce core-sheath hydrogel fibers with the desired optical and mechanical properties suitable for deep-tissue applications, has yet to be achieved. In this study, we report a versatile concept of integrated light-triggered dynamic wet spinning capable of continuously producing core-sheath hydrogel optical fibers with tunable fiber diameters, and mechanical and optical propagation properties. Furthermore, this concept also exhibited versatility for various kinds of core-sheath functional fibers. The wet spinning synthetic procedure and fabrication process were optimized with the rational design of the core/sheath material interface compatibility [core = poly(ethylene glycol diacrylate-co-acrylamide); sheath = Ca-alginate], optical transparency, refractive index and spinning solution viscosity. The resulting hydrogel optical fibers exhibited desirable low optical attenuation (0.18 +/- 0.01 dB cm(-1) with 650 nm laser light), excellent biocompatibility and tissue-like Young's modulus (<2.60 MPa). The optical waveguide hydrogel fibers were successfully employed for deep-tissue cancer therapy and brain optogenetic stimulation, confirming that they could serve as an efficient versatile tool for diverse deep-tissue therapy and brain optogenetic applications.
引用
收藏
页数:12
相关论文
共 46 条
[1]   Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons [J].
Chaudhury, Dipesh ;
Walsh, Jessica J. ;
Friedman, Allyson K. ;
Juarez, Barbara ;
Ku, Stacy M. ;
Koo, Ja Wook ;
Ferguson, Deveroux ;
Tsai, Hsing-Chen ;
Pomeranz, Lisa ;
Christoffel, Daniel J. ;
Nectow, Alexander R. ;
Ekstrand, Mats ;
Domingos, Ana ;
Mazei-Robison, Michelle S. ;
Mouzon, Ezekiell ;
Lobo, Mary Kay ;
Neve, Rachael L. ;
Friedman, Jeffrey M. ;
Russo, Scott J. ;
Deisseroth, Karl ;
Nestler, Eric J. ;
Han, Ming-Hu .
NATURE, 2013, 493 (7433) :532-+
[2]   Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity [J].
Chen, Guoyin ;
Chen, Tao ;
Hou, Kai ;
Ma, Wujun ;
Tebyetekerwa, Mike ;
Cheng, Yanhua ;
Weng, Wei ;
Zhu, Meifang .
CARBON, 2018, 127 :218-227
[3]   Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors [J].
Chen, Shaohua ;
Ma, Wujun ;
Cheng, Yanhua ;
Weng, Zhe ;
Sun, Bin ;
Wang, Lu ;
Chen, Wenping ;
Li, Feng ;
Zhu, Meifang ;
Cheng, Hui-Ming .
NANO ENERGY, 2015, 15 :642-653
[4]   Angle-Independent Optical Moisture Sensors Based on Hydrogel-Coated Plasmonic Lattice Arrays [J].
Chen, Wenxiang ;
Wu, Gaoxiang ;
Zhang, Mingliang ;
Greybush, Nicholas J. ;
Jennings, Jordan P. Howard ;
Song, Naixin ;
Stinner, F. Scott ;
Yang, Shu ;
Kagan, Cherie R. .
ACS APPLIED NANO MATERIALS, 2018, 1 (03) :1430-1437
[5]   Step-Index Optical Fiber Made of Biocompatible Hydrogels [J].
Choi, Myunghwan ;
Humar, Matjaz ;
Kim, Seonghoon ;
Yun, Seok-Hyun .
ADVANCED MATERIALS, 2015, 27 (27) :4081-4086
[6]  
Choi M, 2013, NAT PHOTONICS, V7, P987, DOI [10.1038/NPHOTON.2013.278, 10.1038/nphoton.2013.278]
[7]   Rapid and Continuous Hydrodynamically Controlled Fabrication of Biohybrid Microfibers [J].
Daniele, Michael A. ;
North, Stella H. ;
Naciri, Jawad ;
Howell, Peter B. ;
Foulger, Stephen H. ;
Ligler, Frances S. ;
Adams, Andre A. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (06) :698-704
[8]   Implantable and Biodegradable Poly(L-lactic acid) Fibers for Optical Neural Interfaces [J].
Fu, Ruxing ;
Luo, Wenhan ;
Nazempour, Roya ;
Tan, Daxin ;
Ding, He ;
Zhang, Kaiyuan ;
Yin, Lan ;
Guan, Jisong ;
Sheng, Xing .
ADVANCED OPTICAL MATERIALS, 2018, 6 (03)
[9]   The use of optical fiber in endodontic photodynamic therapy. Is it really relevant? [J].
Garcez, Aguinaldo S. ;
Fregnani, Eduardo R. ;
Rodriguez, Helena M. ;
Nunez, Silvia C. ;
Sabino, Caetano P. ;
Suzuki, Hideo ;
Ribeiro, Martha S. .
LASERS IN MEDICAL SCIENCE, 2013, 28 (01) :79-85
[10]  
Gladman AS, 2016, NAT MATER, V15, P413, DOI [10.1038/nmat4544, 10.1038/NMAT4544]