Convergence of a contact-Neumann iteration for the solution of two-body contact problems

被引:17
作者
Eck, C
Wohlmuth, B
机构
[1] Univ Erlangen Nurnberg, Inst Appl Math, D-91058 Erlangen, Germany
[2] Univ Stuttgart, Inst Appl Anal & Numer Simulat, D-70569 Stuttgart, Germany
关键词
contact problems; mortar finite elements; domain decomposition;
D O I
10.1142/S0218202503002830
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an iteration for the solution of two-body contact problems without friction based on one-sided contact problems for one body and Neumann problems for the other one. The convergence of this iteration is proved in the continuous setting by reformulating it as a fixed point iteration for a contractive operator. In addition, the application of the method with mortar finite elements is discussed, and the convergence of the corresponding discrete iteration is verified.
引用
收藏
页码:1103 / 1118
页数:16
相关论文
共 35 条
[1]  
Andersson T., 1983, PROGR BOUNDARY ELEME, V2, P136
[2]  
[Anonymous], DOMAIN DECOMPOSITION
[3]  
BATHE KJ, 2001, ATTI ACCAD NAZL LINC, V9, P159
[4]   Neumann-Dirichlet algorithm for unilateral contact problems: Convergence results [J].
Bayada, G ;
Sabil, J ;
Sassi, T .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (04) :381-386
[5]   Extension of the mortar finite element method to a variational inequality modeling unilateral contact [J].
Ben Belgacem, F ;
Hild, P ;
Laborde, P .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02) :287-303
[6]  
BERNARDI C, 1993, NATO ADV SCI INST SE, V384, P269
[7]   Adaptive finite elements for elastic bodies in contact [J].
Carstensen, C ;
Scherf, O ;
Wriggers, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05) :1605-1626
[8]   A SOLUTION METHOD FOR STATIC AND DYNAMIC ANALYSIS OF 3-DIMENSIONAL CONTACT PROBLEMS WITH FRICTION [J].
CHAUDHARY, AB ;
BATHE, KJ .
COMPUTERS & STRUCTURES, 1986, 24 (06) :855-873
[9]  
Christensen PW, 1998, INT J NUMER METH ENG, V42, P145, DOI 10.1002/(SICI)1097-0207(19980515)42:1<145::AID-NME358>3.0.CO
[10]  
2-L