Deep Learning of Nanopore Sensing Signals Using a Bi-Path Network

被引:21
作者
Dematties, Dario [1 ]
Wen, Chenyu [2 ]
Perez, Mauricio David [2 ]
Zhou, Dian [3 ]
Zhang, Shi-Li [2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Mendoza Technol Sci Ctr, Inst Ciencias Humanas Sociales & Ambientales, M5500, Mendoza, Argentina
[2] Uppsala Univ, Dept Elect Engn, Div Solid State Elect, SE-75103 Uppsala, Sweden
[3] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
关键词
neural network; deep learning; nanopore sensors; pulse-like signals; feature extraction; SOLID-STATE NANOPORES; TRANSLOCATION; PROTEINS; DNA; ADSORPTION; NOISE;
D O I
10.1021/acsnano.1c03842
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Temporal changes in electrical resistance of a nanopore sensor caused by translocating target analytes are recorded as a sequence of pulses on current traces. Prevalent algorithms for feature extraction in pulse-like signals lack objectivity because empirical amplitude thresholds are user-defined to single out the pulses from the noisy background. Here, we use deep learning for feature extraction based on a bipath network (B-Net). After training, the B-Net acquires the prototypical pulses and the ability of both pulse recognition and feature extraction without a priori assigned parameters. The B-Net is evaluated on simulated data sets and further applied to experimental data of DNA and protein translocation. The B-Net results are characterized by small relative errors and stable trends. The B-Net is further shown capable of processing data with a signal-to-noise ratio equal to 1, an impossibility for threshold-based algorithms. The B-Net presents a generic architecture applicable to pulse-like signals beyond nanopore currents.
引用
收藏
页码:14419 / 14429
页数:11
相关论文
共 45 条
[1]   In Situ Synthetic Functionalization of a Transmembrane Protein Nanopore [J].
Borsley, Stefan ;
Cockroft, Scott L. .
ACS NANO, 2018, 12 (01) :786-794
[2]  
Brown TB, 2020, NEURAL INFORM PROCES
[3]   Interpreting the Conductance Blockades of DNA Translocations through Solid-State Nanopores [J].
Carlsen, Autumn T. ;
Zahid, Osama K. ;
Ruzicka, Jan ;
Taylor, Ethan W. ;
Hall, Adam R. .
ACS NANO, 2014, 8 (05) :4754-4760
[4]   Deep learning for nanopore ionic current blockades [J].
Carral, Angel Diaz ;
Ostertag, Magnus ;
Fyta, Maria .
JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (04)
[5]  
Dematties Dario, 2021, Zenodo, DOI 10.5281/ZENODO.5013856
[6]  
Dematties Dario, 2021, Zenodo, DOI 10.5281/ZENODO.5031817
[7]   Future microfluidic and nanofluidic modular platforms for nucleic acid liquid biopsy in precision medicine [J].
Egatz-Gomez, Ana ;
Wang, Ceming ;
Klacsmann, Flora ;
Pan, Zehao ;
Marczak, Steve ;
Wang, Yunshan ;
Sun, Gongchen ;
Senapati, Satyajyoti ;
Chang, Hsueh-Chia .
BIOMICROFLUIDICS, 2016, 10 (03)
[8]   Slowing DNA translocation in a solid-state nanopore [J].
Fologea, D ;
Uplinger, J ;
Thomas, B ;
McNabb, DS ;
Li, JL .
NANO LETTERS, 2005, 5 (09) :1734-1737
[9]   Nonequilibrium Capture Rates Induce Protein Accumulation and Enhanced Adsorption to Solid-State Nanopores [J].
Freedman, Kevin J. ;
Haq, Syed Raza ;
Fletcher, Michael R. ;
Foley, Joe P. ;
Jemth, Per ;
Edel, Joshua B. ;
Kim, Min Jun .
ACS NANO, 2014, 8 (12) :12238-12249
[10]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149