Functional CLT for sample covariance matrices

被引:17
作者
Bai, Zhidong [1 ,2 ,3 ]
Wang, Xiaoying [4 ]
Zhou, Wang [3 ]
机构
[1] NE Normal Univ, KLASMOE, Changchun 130024, Peoples R China
[2] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[3] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[4] N China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
关键词
Bernstein polynomial; central limit theorem; sample covariance matrices; Stieltjes transform; LIMITING SPECTRAL DISTRIBUTION; CONVERGENCE RATE; DISTRIBUTIONS; EIGENVALUES;
D O I
10.3150/10-BEJ250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using Bernstein polynomial approximations, we prove the central limit theorem for linear spectral statistics of sample covariance matrices, indexed by a set of functions with continuous fourth order derivatives on an open interval including [(1 - root y)(2), (1 + root y)(2)], the support of the Marcenko-Pastur law. We also derive the explicit expressions for asymptotic mean and covariance functions.
引用
收藏
页码:1086 / 1113
页数:28
相关论文
共 19 条
[1]   A CLT for a band matrix model [J].
Anderson, GW ;
Zeitouni, O .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (02) :283-338
[2]  
Bai Z. D., 2006, SPECTRAL ANALYS LA, V2
[3]  
Bai ZD, 1999, STAT SINICA, V9, P611
[4]  
Bai ZD, 2004, ANN PROBAB, V32, P553
[5]   A note on the convergence rate of the spectral distributions of large random matrices [J].
Bai, ZD ;
Miao, BQ ;
Tsay, JS .
STATISTICS & PROBABILITY LETTERS, 1997, 34 (01) :95-101
[6]   Convergence rates of spectral distributions of large sample covariance matrices [J].
Bai, ZD ;
Miao, BQ ;
Yao, JF .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (01) :105-127
[7]  
Bai ZD, 1998, ANN PROBAB, V26, P316
[9]  
Billingsley Patrick, 1995, Probability and Measure
[10]   DISTRIBUTION FUNCTION INEQUALITIES FOR MARTINGALES [J].
BURKHOLDER, DL .
ANNALS OF PROBABILITY, 1973, 1 (01) :19-42