Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean

被引:453
|
作者
Huegler, Michael [1 ]
Sievert, Stefan M. [2 ]
机构
[1] Water Technol Ctr, Dept Microbiol, D-76139 Karlsruhe, Germany
[2] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA
来源
ANNUAL REVIEW OF MARINE SCIENCE, VOL 3 | 2011年 / 3卷
关键词
reductive TCA cycle; hydrothermal vents; oxygen deficiency zones; mesopelagic; bathypelagic; subseafloor; marine microbiology; TRICARBOXYLIC-ACID CYCLE; ANAEROBIC AMMONIUM OXIDATION; HYDROTHERMAL VENT CHIMNEYS; SULFATE-REDUCING BACTERIA; COMPLETE GENOME SEQUENCE; UPPER TEMPERATURE LIMIT; COENZYME-A REDUCTASE; ATP-CITRATE LYASE; CO2; FIXATION; CHLOROFLEXUS-AURANTIACUS;
D O I
10.1146/annurev-marine-120709-142712
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.
引用
收藏
页码:261 / 289
页数:29
相关论文
共 50 条
  • [21] A quantitative comparison of Calvin-Benson cycle models
    Arnold, Anne
    Nikoloski, Zoran
    TRENDS IN PLANT SCIENCE, 2011, 16 (12) : 676 - 683
  • [22] Malonic Semialdehyde Reductase from the Archaeon Nitrosopumilus maritimus Is Involved in the Autotrophic 3-Hydroxypropionate/4-Hydroxybutyrate Cycle
    Otte, Julia
    Mall, Achim
    Schubert, Daniel M.
    Koenneke, Martin
    Berg, Ivan A.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (05) : 1700 - 1707
  • [23] Land and ocean nutrient and carbon cycle interactions
    Matear, Richard J.
    Wang, Ying-Ping
    Lenton, Andrew
    CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY, 2010, 2 (04) : 258 - 263
  • [24] Revisiting groundwater carbon fluxes to the ocean with implications for the carbon cycle
    Zhang, Shuang
    Planavsky, Noah J.
    GEOLOGY, 2020, 48 (01) : 67 - 71
  • [25] Integrative Control of Carbon, Nitrogen, Hydrogen, and Sulfur Metabolism: The Central Role of the Calvin-Benson-Bassham Cycle
    Laguna, Rick
    Joshi, Gauri S.
    Dangel, Andrew W.
    Luther, Amanda K.
    Tabita, F. Robert
    RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES, 2010, 675 : 265 - 271
  • [26] Novel Transcriptional Regulons for Autotrophic Cycle Genes in Crenarchaeota
    Leyn, Semen A.
    Rodionova, Irina A.
    Li, Xiaoqing
    Rodionov, Dmitry A.
    JOURNAL OF BACTERIOLOGY, 2015, 197 (14) : 2383 - 2391
  • [27] Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota
    Berg, Ivan A.
    Ramos-Vera, W. Hugo
    Petri, Anna
    Huber, Harald
    Fuchs, Georg
    MICROBIOLOGY-SGM, 2010, 156 : 256 - 269
  • [28] Autotrophic biorefinery: dawn of the gaseous carbon feedstock
    Butti, Sai Kishore
    Mohan, S. Venkata
    FEMS MICROBIOLOGY LETTERS, 2017, 364 (18)
  • [29] Artificial carbon assimilation: From unnatural reactions and pathways to synthetic autotrophic systems
    Yang, Xue
    Zhang, Yanfei
    Zhao, Guoping
    BIOTECHNOLOGY ADVANCES, 2024, 70
  • [30] Awakening a latent carbon fixation cycle in Escherichia coli
    Satanowski, Ari
    Dronsella, Beau
    Noor, Elad
    Voegeli, Bastian
    He, Hai
    Wichmann, Philipp
    Erb, Tobias J.
    Lindner, Steffen N.
    Bar-Even, Arren
    NATURE COMMUNICATIONS, 2020, 11 (01)