High-Speed Atomic Force Microscopy of the Structure and Dynamics of Calcite Nanoscale Etch Pits

被引:8
作者
Miyata, Kazuki [1 ,3 ]
Takeuchi, Kazuyoshi [1 ]
Kawagoe, Yuta [1 ]
Spijker, Peter [2 ]
Tracey, John [2 ]
Foster, Adam S. [2 ,3 ]
Fukuma, Takeshi [1 ]
机构
[1] Kanazawa Univ, Div Elect Engn & Comp Sci, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan
[2] Aalto Univ, Dept Appl Phys, FI-00076 Helsinki, Finland
[3] Kanazawa Univ, Nano Life Sci Inst WPI NanoLSI, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan
基金
芬兰科学院;
关键词
DISSOLUTION KINETICS; AQUEOUS-SOLUTION; CRYSTAL-GROWTH; WATER; SURFACE; CARBONATE; IONS; TEMPERATURE; ADSORPTION; SIMULATION;
D O I
10.1021/acs.jpclett.1c02088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Calcite dissolution is initiated by the formation of a nanoscale etch pit followed by step edge propagation and hence strongly influenced by the interactions between surface diffusing ions and step edges. However, such atomic-scale dynamics are mostly inaccessible with current imaging tools. Here, we overcome this limitation by using our recent development of high-speed frequency modulation atomic force microscopy. By visualizing atomic-scale structural changes of the etch pits at the calcite surface in water, we found the existence of mobile and less-mobile surface adsorption layers (SALs) in the etch pits. We also found that some etch pits maintain their size for a long time without expansion, and their step edges are often associated with less-mobile SALs, suggesting their step stabilization effect.
引用
收藏
页码:8039 / 8045
页数:7
相关论文
共 50 条
[41]   Application of atomic force microscopy in bitumen materials at the nanoscale: A review [J].
Xing, Chengwei ;
Jiang, Wei ;
Li, Mingchen ;
Wang, Ming ;
Xiao, Jingjing ;
Xu, Zhoucong .
CONSTRUCTION AND BUILDING MATERIALS, 2022, 342
[42]   Scanning speed phenomenon in contact-resonance atomic force microscopy [J].
Glover, Christopher C. ;
Killgore, Jason P. ;
Tung, Ryan C. .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 :945-952
[43]   Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy [J].
Marutschke, Christoph ;
Walters, Deron ;
Cleveland, Jason ;
Hermes, Ilka ;
Bechstein, Ralf ;
Kuehnle, Angelika .
NANOTECHNOLOGY, 2014, 25 (33)
[44]   Visualizing Organophosphate Precipitation at the Calcite-Water Interface by in Situ Atomic-Force Microscopy [J].
Wang, Lijun ;
Qin, Lihong ;
Putnis, Christine V. ;
Ruiz-Agudo, Encarnacion ;
King, Helen E. ;
Putnis, Andrew .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (01) :259-268
[45]   Dissolution of the Calcite (104) Face under Specific Calcite-Aspartic Acid Interaction As Revealed by in Situ Atomic Force Microscopy [J].
Wu, Congmeng ;
Zhao, Kang ;
Wang, Xiaoqiang ;
Cao, Meiwen ;
Xu, Hai ;
Lu, Jian R. .
CRYSTAL GROWTH & DESIGN, 2012, 12 (05) :2594-2601
[46]   Open-source controller for low-cost and high-speed atomic force microscopy imaging of skin corneocyte nanotextures [J].
Liao, Hsien-Shun ;
Akhtar, Imtisal ;
Werner, Christian ;
Slipets, Roman ;
Pereda, Jorge ;
Wang, Jen-Hung ;
Raun, Ellen ;
Norgaard, Laura Olga ;
Dons, Frederikke Elisabet ;
Hwu, Edwin En Te .
HARDWAREX, 2022, 12
[47]   Molecular dynamics study of dynamical contact between a nanoscale tip and substrate for atomic force microscopy experiments [J].
Kim, Hojin ;
Venturini, Gabriela ;
Strachan, Alejandro .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (09)
[48]   Nanoscale Flexing Mechanism of a Metal-Organic Framework Determined by Atomic Force Microscopy [J].
Trueman, Mollie ;
Pooley, Rachel J. S. ;
Lutton-Gething, A. R. Bonity J. ;
Hasija, Avantika ;
Whitehead, George F. S. ;
O'Shea, Sean J. ;
Anderson, Michael W. ;
Attfield, Martin P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (20) :17201-17208
[49]   High Speed Scanning Ion Conductance Microscopy for Quantitative Analysis of Nanoscale Dynamics of Microvilli [J].
Ida, Hiroki ;
Takahashi, Yasufumi ;
Kumatani, Akichika ;
Shiku, Hitoshi ;
Matsue, Tomokazu .
ANALYTICAL CHEMISTRY, 2017, 89 (11) :6016-6021
[50]   Nanoscale roughness and bias in step height measurements by atomic force microscopy [J].
Seah, M. P. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (03)