High-Speed Atomic Force Microscopy of the Structure and Dynamics of Calcite Nanoscale Etch Pits

被引:8
作者
Miyata, Kazuki [1 ,3 ]
Takeuchi, Kazuyoshi [1 ]
Kawagoe, Yuta [1 ]
Spijker, Peter [2 ]
Tracey, John [2 ]
Foster, Adam S. [2 ,3 ]
Fukuma, Takeshi [1 ]
机构
[1] Kanazawa Univ, Div Elect Engn & Comp Sci, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan
[2] Aalto Univ, Dept Appl Phys, FI-00076 Helsinki, Finland
[3] Kanazawa Univ, Nano Life Sci Inst WPI NanoLSI, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan
基金
芬兰科学院;
关键词
DISSOLUTION KINETICS; AQUEOUS-SOLUTION; CRYSTAL-GROWTH; WATER; SURFACE; CARBONATE; IONS; TEMPERATURE; ADSORPTION; SIMULATION;
D O I
10.1021/acs.jpclett.1c02088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Calcite dissolution is initiated by the formation of a nanoscale etch pit followed by step edge propagation and hence strongly influenced by the interactions between surface diffusing ions and step edges. However, such atomic-scale dynamics are mostly inaccessible with current imaging tools. Here, we overcome this limitation by using our recent development of high-speed frequency modulation atomic force microscopy. By visualizing atomic-scale structural changes of the etch pits at the calcite surface in water, we found the existence of mobile and less-mobile surface adsorption layers (SALs) in the etch pits. We also found that some etch pits maintain their size for a long time without expansion, and their step edges are often associated with less-mobile SALs, suggesting their step stabilization effect.
引用
收藏
页码:8039 / 8045
页数:7
相关论文
共 50 条
[31]   Crystal Growth and Dissolution of Calcite in the Presence of Fluoride Ions: An Atomic Force Microscopy Study [J].
Vavouraki, Aikaterini I. ;
Putnis, Christine V. ;
Putnis, Andrew ;
Koutsoukos, Petros G. .
CRYSTAL GROWTH & DESIGN, 2010, 10 (01) :60-69
[32]   Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips [J].
Gelman Constantin, Julian ;
Carignano, Marcelo A. ;
Corti, Horacio R. ;
Szleifer, Igal .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (48) :27118-27124
[33]   Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images [J].
Ogane, Tomonori ;
Noshiro, Daisuke ;
Ando, Toshio ;
Yamashita, Atsuko ;
Sugita, Yuji ;
Matsunaga, Yasuhiro .
PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (12)
[34]   High-speed penetration dynamics of polycarbonate [J].
Bian, Y. L. ;
Liu, Q. ;
Feng, Z. D. ;
Hua, J. Y. ;
Xie, H. L. ;
Chen, S. ;
Cai, Y. ;
Yao, X. H. ;
Luo, S. N. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 223
[35]   An Atomic Force Microscopy study of the growth of calcite in the presence of sodium sulfate [J].
Vavouraki, Aikaterini I. ;
Putnis, Christine V. ;
Putnis, Andrew ;
Koutsoukos, Petros G. .
CHEMICAL GEOLOGY, 2008, 253 (3-4) :243-251
[36]   Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy [J].
Soengen, Hagen ;
Reischl, Bernhard ;
Miyata, Kazuki ;
Bechstein, Ralf ;
Raiteri, Paolo ;
Rohl, Andrew L. ;
Gale, Julian D. ;
Fukuma, Takeshi ;
Kuehnle, Angelika .
PHYSICAL REVIEW LETTERS, 2018, 120 (11)
[37]   An atomic force microscopy study of the dissolution of calcite in the presence of phosphate ions [J].
Klasa, J. ;
Ruiz-Agudo, E. ;
Wang, L. J. ;
Putnis, C. V. ;
Valsami-Jones, E. ;
Menneken, M. ;
Putnis, A. .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2013, 117 :115-128
[38]   Contact stiffness effects on nanoscale high-speed grinding: A molecular dynamics approach [J].
Papanikolaou, Michail ;
Salonitis, Konstantinos .
APPLIED SURFACE SCIENCE, 2019, 493 :212-224
[39]   Atomic force microscopy as a biophysical tool for nanoscale forensic investigations [J].
Yadavalli, Vamsi K. ;
Ehrhardt, Christopher J. .
SCIENCE & JUSTICE, 2021, 61 (01) :1-12
[40]   Hollow Atomic Force Microscopy Cantilevers with Nanoscale Wall Thicknesses [J].
Cha, Wujoon ;
Campbell, Matthew F. ;
Hasz, Kathryn ;
Nicaise, Samuel M. ;
Lilley, Drew E. ;
Sato, Takaaki ;
Carpick, Robert W. ;
Bargatin, Igor .
SMALL, 2021, 17 (51)