BOUND STATES OF THE SCHRODINGER OPERATOR OF A SYSTEM OF THREE BOSONS ON A LATTICE

被引:2
作者
Lakaev, S. N. [1 ]
Khalmukhamedov, A. R. [1 ]
Khalkhuzhaev, A. M. [1 ]
机构
[1] Samarkand State Univ, Samarkand, Uzbekistan
关键词
discrete Schrodinger operator; three-particle system; contact coupling; eigenvalue; bound state; essential spectrum; lattice; DISCRETE SPECTRUM ASYMPTOTICS;
D O I
10.1134/S0040577916070035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Hamiltonian H-mu of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice Z(d), d = 1, 2, and coupled by an attractive pairwise contact potential mu < 0. We prove that the number of bound states of the corresponding Schrodinger operator H-mu(K), K is an element of T-d, is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum K is an element of T-d are regular.
引用
收藏
页码:994 / 1005
页数:12
相关论文
共 16 条
[1]   The Efimov effect and an extended Szego-Kac limit theorem [J].
Albeverio, S ;
Lakaev, S ;
Makarov, KA .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (01) :73-85
[2]  
Albeverio S, 2004, ANN HENRI POINCARE, V5, P743, DOI [10.1007/s00023-004-0181-9, 10.1007/S00023-004-0181-9]
[3]  
Albeverio S, 2012, MARKOV PROCESS RELAT, V18, P387
[4]  
[Anonymous], MATH USSR SB
[5]   ENERGY LEVELS ARISING FROM RESONANT 2-BODY FORCES IN A 3-BODY SYSTEM [J].
EFIMOV, V .
PHYSICS LETTERS B, 1970, B 33 (08) :563-&
[6]  
Faddeev L. D., 1963, T MIAN ACAD SCI USSR, V69
[7]   Asymptotic behavior of an eigenvalue of the two-particle discrete Schrodinger operator [J].
Lakaev, S. N. ;
Khalkhuzhaev, A. M. ;
Lakaev, Sh S. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 171 (03) :800-811
[8]   ON EFIMOV EFFECT IN A SYSTEM OF 3 IDENTICAL QUANTUM PARTICLES [J].
LAKAEV, SN .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (03) :166-175
[9]  
Merkuriev S. P., 1985, MATH PHYS APPL MATH, V11
[10]   Spectrum of the three-particle Schrodinger operator on a one-dimensional lattice [J].
Muminov, M. E. ;
Aliev, N. M. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 171 (03) :754-768