Robust Explainability A tutorial on gradient-based attribution methods for deep neural networks

被引:43
|
作者
Nielsen, Ian E. [1 ]
Dera, Dimah [2 ]
Rasool, Ghulam [3 ,4 ,5 ]
Ramachandran, Ravi P. [6 ,7 ]
Bouaynaya, Nidhal Carla [8 ,9 ]
机构
[1] Rowan Univ, Glassboro, NJ 08028 USA
[2] Univ Texas Rio Grande Valley, Elect & Comp Engn, Edinburg, TX 78500 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Machine Learning Dept, Tampa, FL 33612 USA
[4] Rehabil Inst Chicago, Chicago, IL 60611 USA
[5] Northwestern Univ, Evanston, IL 60208 USA
[6] AT&T Bell Labs, Speech Res Dept, Atlanta, GA USA
[7] Rowan Univ, Dept Elect & Comp Engn, Glassboro, NJ 08028 USA
[8] Rowan Univ, ECE, Glassboro, NJ 08028 USA
[9] Rowan Univ, Res & Grad Studies, Glassboro, NJ 08028 USA
关键词
DECISIONS;
D O I
10.1109/MSP.2022.3142719
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rise in deep neural networks (DNNs) has led to increased interest in explaining their predictions. While many methods for this exist, there is currently no consensus on how to evaluate them. On the other hand, robustness is a popular topic for deep learning (DL) research; however, it has been hardly talked about in explainability until very recently. © 1991-2012 IEEE.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 50 条
  • [1] Gradient-based feature-attribution explainability methods for spiking neural networks
    Bitar, Ammar
    Rosales, Rafael
    Paulitsch, Michael
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [2] A Gradient-Based Algorithm to Deceive Deep Neural Networks
    Xie, Tianying
    Li, Yantao
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV, 2019, 1142 : 57 - 65
  • [3] Correcting gradient-based interpretations of deep neural networks for genomics
    Antonio Majdandzic
    Chandana Rajesh
    Peter K. Koo
    Genome Biology, 24
  • [4] Correcting gradient-based interpretations of deep neural networks for genomics
    Majdandzic, Antonio
    Rajesh, Chandana
    Koo, Peter K.
    GENOME BIOLOGY, 2023, 24 (01)
  • [5] Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning
    Wang, Hanjing
    Joshi, Dhiraj
    Wang, Shiqiang
    Ji, Qiang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 12044 - 12053
  • [6] SpotOn: A Gradient-based Targeted Data Poisoning Attack on Deep Neural Networks
    Khare, Yash
    Lakara, Kumud
    Mittal, Sparsh
    Kaushik, Arvind
    Singhal, Rekha
    2023 24TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED, 2023, : 391 - 398
  • [7] Structural optimization by gradient-based neural networks
    Iranmanesh, A
    Kaveh, A
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 46 (02) : 297 - 311
  • [8] Gradient-based PIV using neural networks
    I. Kimura
    Y. Susaki
    R. Kiyohara
    A. Kaga
    Y. Kuroe
    Journal of Visualization, 2002, 5 : 363 - 370
  • [9] Gradient-based PIV using neural networks
    Kimura, I
    Susaki, Y
    Kiyohara, R
    Kaga, A
    Kuroe, Y
    JOURNAL OF VISUALIZATION, 2002, 5 (04) : 363 - 370
  • [10] Robust Beamforming With Gradient-Based Liquid Neural Network
    Wang, Xinquan
    Zhu, Fenghao
    Huang, Chongwen
    Alhammadi, Ahmed
    Bader, Faouzi
    Zhang, Zhaoyang
    Yuen, Chau
    Debbah, Merouane
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (11) : 3020 - 3024