EXISTENCE OF A SOLUTION FOR A NON-LOCAL PROBLEM IN RN VIA BIFURCATION THEORY

被引:5
作者
Alves, Claudianor O. [1 ]
de Lima, Romildo N. [1 ]
Souto, Marco A. S. [1 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
关键词
non-local logistic equations; a priori bounds; positive solutions; EQUATION;
D O I
10.1017/S001309151700030X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of a solution for the following class of non-local problems: (Graphic) where N >= 3, lambda > 0, gamma is an element of (1, 2), f : R - R is a positive continuous function and K : R-N x R-N -> R is a non-negative function. The functions f and K satisfy some conditions that permit us to use bifurcation theory to prove tlie existence of a solution for (P).
引用
收藏
页码:825 / 845
页数:21
相关论文
共 15 条
  • [1] Existence of positive solution of a nonlocal logistic population model
    Alves, Claudianor O.
    Delgado, Manuel
    Souto, Marco A. S.
    Suarez, Antonio
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 943 - 953
  • [2] [Anonymous], 2010, FUNCTIONAL ANAL
  • [3] [Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
  • [4] [Anonymous], [No title captured]
  • [5] SUBLINEAR ELLIPTIC-EQUATIONS IN RN
    BREZIS, H
    KAMIN, S
    [J]. MANUSCRIPTA MATHEMATICA, 1992, 74 (01) : 87 - 106
  • [6] On the Schrodinger equation involving a critical Sobolev exponent and magnetic field
    Chabrowski, J
    Szulkin, A
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2005, 25 (01) : 3 - 21
  • [7] Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect
    Chen, Shanshan
    Shi, Junping
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (12) : 3440 - 3470
  • [8] Chipot M., 2006, Recent Advances on Elliptic and Parabolic Issues, P79
  • [9] Corrêa FJSA, 2011, ADV DIFFERENTIAL EQU, V16, P623
  • [10] Coville J., 2013, ARXIV1308647