EXISTENCE OF A SOLUTION FOR A NON-LOCAL PROBLEM IN RN VIA BIFURCATION THEORY

被引:7
作者
Alves, Claudianor O. [1 ]
de Lima, Romildo N. [1 ]
Souto, Marco A. S. [1 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
关键词
non-local logistic equations; a priori bounds; positive solutions; EQUATION;
D O I
10.1017/S001309151700030X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of a solution for the following class of non-local problems: (Graphic) where N >= 3, lambda > 0, gamma is an element of (1, 2), f : R - R is a positive continuous function and K : R-N x R-N -> R is a non-negative function. The functions f and K satisfy some conditions that permit us to use bifurcation theory to prove tlie existence of a solution for (P).
引用
收藏
页码:825 / 845
页数:21
相关论文
共 15 条
[1]   Existence of positive solution of a nonlocal logistic population model [J].
Alves, Claudianor O. ;
Delgado, Manuel ;
Souto, Marco A. S. ;
Suarez, Antonio .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03) :943-953
[2]  
[Anonymous], 2010, FUNCTIONAL ANAL
[3]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[4]  
[Anonymous], [No title captured]
[5]   SUBLINEAR ELLIPTIC-EQUATIONS IN RN [J].
BREZIS, H ;
KAMIN, S .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :87-106
[6]   On the Schrodinger equation involving a critical Sobolev exponent and magnetic field [J].
Chabrowski, J ;
Szulkin, A .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2005, 25 (01) :3-21
[7]   Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect [J].
Chen, Shanshan ;
Shi, Junping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (12) :3440-3470
[8]  
Chipot M., 2006, Recent Advances on Elliptic and Parabolic Issues, P79
[9]  
Corrêa FJSA, 2011, ADV DIFFERENTIAL EQU, V16, P623
[10]  
Coville J., 2013, ARXIV1308647