Geometry of quantum systems: density states and entanglement

被引:74
|
作者
Grabowski, J
Kus, M
Marmo, G
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[2] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[3] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[4] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 47期
关键词
D O I
10.1088/0305-4470/38/47/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Various problems concerning the geometry of the space u*(H) of Hermitian operators on a Hilbert space H are addressed. In particular, we study the canonical Poisson and Riemann-Jordan tensors and the corresponding foliations into Kahler submanifolds. It is also shown that the space D(H) of density states on an n-dimensional Hilbert space H is naturally a manifold stratified space with the stratification induced by the the rank of the state. Thus the space D-k(H) of rank-k states, k = 1,..., n, is a smooth manifold of (real) dimension 2nk - k(2) - 1 and this stratification is maximal in the sense that every smooth curve in D(H), viewed as a subset of the dual u*(H) to the Lie algebra of the unitary group U (R), at every point must be tangent to the strata D-k(H) it crosses. For a quantum composite system, i.e. for a Hilbert space decomposition H = H-1 circle times H-2, an abstract criterion of entanglement is proved.
引用
收藏
页码:10217 / 10244
页数:28
相关论文
共 50 条
  • [1] Density of States of Quantum Spin Systems from Isotropic Entanglement
    Movassagh, Ramis
    Edelman, Alan
    PHYSICAL REVIEW LETTERS, 2011, 107 (09)
  • [2] Asymptotic entanglement dynamics and geometry of quantum states
    Drumond, R. C.
    Cunha, M. O. Terra
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (28)
  • [3] Extracting Entanglement Geometry from Quantum States
    Hyatt, Katharine
    Garrison, James R.
    Bauer, Bela
    PHYSICAL REVIEW LETTERS, 2017, 119 (14)
  • [4] Extremality and entanglement of states in coupled quantum systems
    Parthasarathy, K. R.
    QUANTUM COMPUTING: BACK ACTION 2006, 2006, 864 : 54 - 66
  • [5] Note on quantum entanglement and quantum geometry
    Ling, Yi
    Xiao, Yikang
    Wu, Meng-He
    PHYSICS LETTERS B, 2019, 798
  • [6] Dynamics and geometry of entanglement in many-body quantum systems
    Azodi, Peyman
    Rabitz, Herschel A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025,
  • [7] Geometry and Entanglement of Two-Qubit States in the Quantum Probabilistic Representation
    Alberto Lopez-Saldivar, Julio
    Castanos, Octavio
    Nahmad-Achar, Eduardo
    Lopez-Pena, Ramon
    Man'ko, Margarita A.
    Man'ko, Vladimir I.
    ENTROPY, 2018, 20 (09)
  • [8] Local density of states and particle entanglement in topological quantum fluids
    Pu, Songyang
    Balram, Ajit C.
    Papic, Zlatko
    PHYSICAL REVIEW B, 2022, 106 (04)
  • [9] Entanglement of quantum states between macroscopic and microscopic systems
    Lee, Juhui
    Podoshvedov, Sergey A.
    Kim, Jaewan
    Oh, Sung Dahm
    2007 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1-4, 2007, : 937 - +
  • [10] Measure of the density of quantum states in information geometry and quantum multiparameter estimation
    Xing, Haijun
    Fu, Libin
    PHYSICAL REVIEW A, 2020, 102 (06)