Testing the analytical model of the pyramid wavefront sensor with high-order aberrations on the optical bench

被引:0
|
作者
Rosensteiner, Matthias [1 ]
Veran, Jean-Pierre [1 ]
机构
[1] NRC Herzberg, Victoria, BC V9E 2E7, Canada
来源
ADAPTIVE OPTICS SYSTEMS IV | 2014年 / 9148卷
关键词
D O I
10.1117/12.2056895
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The pyramid wavefront sensor (PWFS) is generally considered a better alternative to the widely used Shack-Hartmann wavefront sensor (SHWFS), due to the theoretically higher sensibility and increased resistance to aliasing. These properties, which stem from the duality of the PWFS as a slope/phase sensor, are very desirable, since they can lead to increased performance and higher sky coverage in AO systems. We have tried to verify these properties experimentally by using a 32x32 MEMS deformable mirror to create Fourier modes, which were presented to a prototype PWFS.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The pyramid wavefront sensor for the High Order Testbench (HOT)
    Pinna, E.
    Puglisi, A. T.
    Quiros-Pacheco, F.
    Busoni, L.
    Tozzi, A.
    Esposito, S.
    Aller-Carpentier, E.
    Kasper, M.
    ADAPTIVE OPTICS SYSTEMS, PTS 1-3, 2008, 7015
  • [2] Fast modulation and dithering on a pyramid wavefront sensor bench
    van Kooten, Maaike
    Bradley, Colin
    Veran, Jean-Pierre
    Herriot, Glen
    Lardiere, Olivier
    ADAPTIVE OPTICS SYSTEMS V, 2016, 9909
  • [3] Measuring Phase Aberrations using a Pyramid Wavefront Sensor
    Daly, Elizabeth M.
    Dainty, Christopher J.
    OPTICAL SENSING AND DETECTION, 2010, 7726
  • [4] Measurement of human eye aberrations using an optical simulator based on pyramid wavefront sensor
    Wang, Chaoyan
    Chen, Xinyang
    Zheng, Zheng
    Bu, Zhaohui
    Cai, Jianqing
    Ding, Yuanyuan
    Wang, Bei
    AOPC 2020: OPTICAL SPECTROSCOPY AND IMAGING; AND BIOMEDICAL OPTICS, 2020, 11566
  • [5] Dual-loop adaptive optical system for compensation of the low- and high-order wavefront aberrations
    Toporovsky, Vladimir
    Galaktionov, Ilya
    Nikitin, Alexander
    Samarkin, Vadim
    Kuzmitsky, Pavel
    Kudryashov, Alexis
    NOVEL OPTICAL SYSTEMS, METHODS, AND APPLICATIONS XXVII, 2024, 13130
  • [6] Testing the pyramid wavefront sensor on the sky.
    Ragazzoni, R
    Ghedina, A
    Baruffolo, A
    Marchetti, E
    Farinato, J
    Niero, T
    Crimi, G
    Ghigo, M
    ADAPTIVE OPTICAL SYSTEMS TECHNOLOGY, PTS 1 AND 2, 2000, 4007 : 423 - 430
  • [7] Pyramid wavefront sensor optical gains compensation using a convolutional model
    Chambouleyron, V
    Fauvarque, O.
    Janin-Potiron, P.
    Correia, C.
    Sauvage, J-F
    Schwartz, N.
    Neichel, B.
    Fusco, T.
    ASTRONOMY & ASTROPHYSICS, 2020, 644
  • [8] Ocular Anterior Segment Biometry and High-Order Wavefront Aberrations During Accommodation
    Yuan, Yimin
    Shao, Yilei
    Tao, Aizhu
    Shen, Meixiao
    Wang, Jianhua
    Shi, Guohua
    Chen, Qi
    Zhu, Dexi
    Lian, Yan
    Qu, Jia
    Zhang, Yudong
    Lu, Fan
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (10) : 7028 - 7037
  • [9] High-order optical vortex position detection using a Shack-Hartmann wavefront sensor
    Luo, Jia
    Huang, Hongxin
    Matsui, Yoshinori
    Toyoda, Haruyoshi
    Inoue, Takashi
    Bai, Jian
    OPTICS EXPRESS, 2015, 23 (07): : 8706 - 8719
  • [10] Testing a non-modulated pyramid wavefront sensor
    Costa, JB
    Stumpf, M
    Feldt, M
    ADVANCEMENTS IN ADAPTIVE OPTICS, PTS 1-3, 2004, 5490 : 1304 - 1314