Natural constructions of some generalized Kac-Moody algebras as bosonic strings

被引:0
作者
Creutzig, Thomas [1 ]
Klauer, Alexander [2 ]
Scheithauer, Nils R. [3 ]
机构
[1] DESY Theory Grp, D-22603 Hamburg, Germany
[2] Univ Mannheim, Dept Math, D-68131 Mannheim, Germany
[3] Univ Edinburgh, Maxwell Inst Math Sci, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are 10 generalized Kac-Moody algebras whose denominator identities are completely reflective automorphic products of singular weight on lattices of squarefree level. Under the assumption that the meromorphic vertex operator algebra of central charge 24 and spin-1 algebra (A) over cap (r)(p-1,p), exists we show that four of them can be constructed in a uniform way from bosonic strings moving on suitable target spaces.
引用
收藏
页码:453 / 477
页数:25
相关论文
共 22 条
[1]  
[Anonymous], 2003, FIELDS I COMMUN
[2]   A CHARACTERIZATION OF GENERALIZED KAC-MOODY ALGEBRAS [J].
BORCHERDS, RE .
JOURNAL OF ALGEBRA, 1995, 174 (03) :1073-1079
[3]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[4]   LATTICES LIKE THE LEECH LATTICE [J].
BORCHERDS, RE .
JOURNAL OF ALGEBRA, 1990, 130 (01) :219-234
[5]   THE MONSTER LIE-ALGEBRA [J].
BORCHERDS, RE .
ADVANCES IN MATHEMATICS, 1990, 83 (01) :30-47
[6]   MONSTROUS MOONSHINE AND MONSTROUS LIE-SUPERALGEBRAS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :405-444
[7]  
Conway J., 1998, Grundlehren der mathematischen Wissenschaften, V290
[8]   VERTEX OPERATOR-ALGEBRAS ASSOCIATED TO REPRESENTATIONS OF AFFINE AND VIRASORO ALGEBRAS [J].
FRENKEL, IB ;
ZHU, YC .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (01) :123-168
[9]  
FRENKEL IB, 1993, MEM AM MATH SOC, V104, pR6
[10]   SIMPLE WZW CURRENTS [J].
FUCHS, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (02) :345-356