MDL regularizer: A new regularizer based on the MDL principle

被引:0
|
作者
Saito, K
Nakano, R
机构
来源
1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4 | 1997年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new regularization method based on the MDL (Minimum Description Length) principle. An adequate precision weight vector is trained by approximately truncating the maximum likelihood weight vector. The main advantage of the proposed regularizer over existing ones is that it automatically determines a regularization factor without assuming any specific prior distribution with respect to the weight values. Our experiments using a regression problem showed that the MDL regularizer significantly improves the generalization error of a second-order learning algorithm and shows a comparable generalization performance to the best tuned weight-decay regularizer.
引用
收藏
页码:1833 / 1838
页数:6
相关论文
共 50 条
  • [41] Uncorrelation and Evenness: a New Diversity-Promoting Regularizer
    Xie, Pengtao
    Singh, Aarti
    Xing, Eric P.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [42] Extendable MDL
    Harremoes, Peter
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1516 - 1520
  • [43] MDL denoising
    Rissanen, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) : 2537 - 2543
  • [44] MDL AS CATEGORY
    Clopton, Zachary D.
    CORNELL LAW REVIEW, 2020, 105 (05) : 1297 - 1342
  • [45] MDL IN THE STATES
    Clopton, Zachary D.
    Rave, D. Theodore
    NORTHWESTERN UNIVERSITY LAW REVIEW, 2021, 115 (06) : 1649 - 1735
  • [46] MDL transduction
    Wang, LW
    Feng, JF
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 3075 - 3080
  • [47] MDL Myths
    Baker, Lynn A.
    Bradt, Andrew D.
    TEXAS LAW REVIEW, 2023, 101 (07) : 1521 - 1567
  • [48] MDL 28170
    不详
    Drugs in R & D, 2002, 3 (2) : 109 - 110
  • [49] Detecting Metachanges in Data Streams from the Viewpoint of the MDL Principle
    Fukushima, Shintaro
    Yamanishi, Kenji
    ENTROPY, 2019, 21 (12)
  • [50] Wavelet denoising in non gaussian noise using MDL principle
    Xie, JC
    Zhang, DL
    Xu, WL
    PROCEEDINGS OF THE 4TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-4, 2002, : 2075 - 2079