MDL regularizer: A new regularizer based on the MDL principle

被引:0
作者
Saito, K
Nakano, R
机构
来源
1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4 | 1997年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new regularization method based on the MDL (Minimum Description Length) principle. An adequate precision weight vector is trained by approximately truncating the maximum likelihood weight vector. The main advantage of the proposed regularizer over existing ones is that it automatically determines a regularization factor without assuming any specific prior distribution with respect to the weight values. Our experiments using a regression problem showed that the MDL regularizer significantly improves the generalization error of a second-order learning algorithm and shows a comparable generalization performance to the best tuned weight-decay regularizer.
引用
收藏
页码:1833 / 1838
页数:6
相关论文
共 50 条
[31]   Covariance Matrix Estimation with Multi-Regularization Parameters based on MDL Principle [J].
Xiuling Zhou ;
Ping Guo ;
C. L. Philip Chen .
Neural Processing Letters, 2013, 38 :227-238
[32]   Covariance Matrix Estimation with Multi-Regularization Parameters based on MDL Principle [J].
Zhou, Xiuling ;
Guo, Ping ;
Chen, C. L. Philip .
NEURAL PROCESSING LETTERS, 2013, 38 (02) :227-238
[33]   On the Performance Improvement of Microwave Imaging Using MDL Principle [J].
Ravan, Mohammad ;
Nakhkash, Mansor ;
Abouei, Jamshid .
2012 SIXTH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2012, :348-353
[34]   Vouw: Geometric Pattern Mining Using the MDL Principle [J].
Faas, Micky ;
van Leeuwen, Matthijs .
ADVANCES IN INTELLIGENT DATA ANALYSIS XVIII, IDA 2020, 2020, 12080 :158-170
[35]   Generalizing case frames using a thesaurus and the MDL principle [J].
Li, H ;
Abe, N .
COMPUTATIONAL LINGUISTICS, 1998, 24 (02) :217-244
[36]   Model selection using information theory and the MDL principle [J].
Stine, RA .
SOCIOLOGICAL METHODS & RESEARCH, 2004, 33 (02) :230-260
[37]   Botnet Detection Based on Non-negative Matrix Factorization and the MDL Principle [J].
Yamauchi, Sayaka ;
Kawakita, Masanori ;
Takeuchi, Jun'ichi .
NEURAL INFORMATION PROCESSING, ICONIP 2012, PT V, 2012, 7667 :400-409
[38]   Alternating projection algorithm for detecting the number of coherent signals based on the MDL principle [J].
Suzuki, M ;
Sanada, H ;
Nagai, N .
2000 IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS: ELECTRONIC COMMUNICATION SYSTEMS, 2000, :699-702
[39]   MDL REVOLUTION [J].
Gluck, Abbe R. ;
Burch, Elizabeth Chamblee .
NEW YORK UNIVERSITY LAW REVIEW, 2021, 96 (01) :1-75
[40]   Nonconvex sparse regularizer based speckle noise removal [J].
Han, Yu ;
Feng, Xiang-Chu ;
Baciu, George ;
Wang, Wei-Wei .
PATTERN RECOGNITION, 2013, 46 (03) :989-1001