MDL regularizer: A new regularizer based on the MDL principle

被引:0
|
作者
Saito, K
Nakano, R
机构
来源
1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4 | 1997年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new regularization method based on the MDL (Minimum Description Length) principle. An adequate precision weight vector is trained by approximately truncating the maximum likelihood weight vector. The main advantage of the proposed regularizer over existing ones is that it automatically determines a regularization factor without assuming any specific prior distribution with respect to the weight values. Our experiments using a regression problem showed that the MDL regularizer significantly improves the generalization error of a second-order learning algorithm and shows a comparable generalization performance to the best tuned weight-decay regularizer.
引用
收藏
页码:1833 / 1838
页数:6
相关论文
共 50 条
  • [1] On a new notion of regularizer
    Ramm, AG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (08): : 2191 - 2195
  • [2] An optimal DNA segmentation based on the MDL principle
    Szpankowski, W
    Ren, WH
    Szpankowski, L
    PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, : 541 - 546
  • [3] SPARSE CODING AND DICTIONARY LEARNING BASED ON THE MDL PRINCIPLE
    Ramirez, Ignacio
    Sapiro, Guillermo
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2160 - 2163
  • [4] Joint motion estimation and segmentation based on the MDL principle
    Shanghai Jiaotong Univ, Shanghai, China
    Int Conf Signal Process Proc, (963-967):
  • [5] Automatic discovery of definition patterns based on the MDL principle
    Tsuchiya, M
    Kurohashi, S
    DISCOVERY SCIENCE, PROCEEDINGS, 1999, 1721 : 364 - 365
  • [6] Joint motion estimation and segmentation based on the MDL principle
    Shi, JL
    Pan, J
    Yu, SY
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 963 - 967
  • [7] New paradigm of learnable computer vision algorithms based on the representational MDL principle
    Potapov, Alexey S.
    Malyshev, Igor A.
    Puysha, Alexander E.
    Averkin, Anton N.
    AUTOMATIC TARGET RECOGNITION XX; ACQUISITION, TRACKING, POINTING, AND LASER SYSTEMS TECHNOLOGIES XXIV; AND OPTICAL PATTERN RECOGNITION XXI, 2010, 7696
  • [8] Model Change Detection With the MDL Principle
    Yamanishi, Kenji
    Fukushima, Shintaro
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (09) : 6115 - 6126
  • [9] MDL principle for robust vector quantisation
    Bischof, H
    Leonardis, A
    Selb, A
    PATTERN ANALYSIS AND APPLICATIONS, 1999, 2 (01) : 59 - 72
  • [10] MDL Principle for Robust Vector Quantisation
    Horst Bischof
    Aleš Leonardis
    Alexander Selb
    Pattern Analysis & Applications, 1999, 2 : 59 - 72