Electrochemical properties of Mn-doped activated carbon aerogel as electrode material for supercapacitor

被引:42
作者
Lee, Yoon Jae [1 ]
Park, Hai Woong [1 ]
Park, Sunyoung [1 ]
Song, In Kyu [1 ]
机构
[1] Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, Seoul 151744, South Korea
关键词
Activated carbon aerogel; Manganese oxide; Pseudocapacitance; Supercapacitor; PERFORMANCE; CAPACITANCE; ENERGY; STORAGE; LIMITS; FILM;
D O I
10.1016/j.cap.2011.06.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and it was activated with KOH to obtain activated carbon aerogel (ACA). Specific capacitance of carbon aerogel and activated carbon aerogel was measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Activated carbon aerogel showed higher specific capacitance than carbon aerogel (136 F/g vs. 90 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudocapacitive property of manganese oxide, 7 wt% manganese oxide was doped on activated carbon aerogel by an incipient wetness impregnation method. For comparison, 7 wt% manganese oxide was also doped on carbon aerogel by an incipient wetness impregnation method. It was revealed that 7 wt% Mn-doped activated carbon aerogel (Mn/ACA) showed higher specific capacitance than 7 wt% Mn-doped carbon aerogel (Mn/CA) (168 F/g vs. 98 F/g). The enhanced capacitance of 7 wt% Mn-doped activated carbon aerogel was attributed to the outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide. (C) 2011 Elsevier B. V. All rights reserved.
引用
收藏
页码:233 / 237
页数:5
相关论文
共 41 条
[1]   Capacitance limits of high surface area activated carbons for double layer capacitors [J].
Barbieri, O ;
Hahn, M ;
Herzog, A ;
Kötz, R .
CARBON, 2005, 43 (06) :1303-1310
[2]   Ageing behaviour of electrochemical double layer capacitors Part I. Experimental study and ageing model [J].
Bohlen, Oliver ;
Kowal, Julia ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2007, 172 (01) :468-475
[3]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[4]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[5]   Preparation and capacitive properties of cobalt-nickel oxides/carbon nanotube composites [J].
Fan, Zhen ;
Chen, Jinhua ;
Cui, Kunzai ;
Sun, Feng ;
Xu, Yan ;
Kuang, Yanfei .
ELECTROCHIMICA ACTA, 2007, 52 (09) :2959-2965
[6]   Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:: Implications for electrochemical capacitors [J].
Fischer, Anne E. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Stroud, Rhonda M. ;
Long, Jeffrey W. .
NANO LETTERS, 2007, 7 (02) :281-286
[7]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[8]  
Fricke J., 1995, J NONCRYST SOLIDS, V8, P226
[9]   Amorphous Ru1-yCryO2 loaded on TiO2 nanotubes for electrochemical capacitors [J].
Gao Bo ;
Zhang Xiaogang ;
Yuan Changzhou ;
Li Juan ;
Yu Long .
ELECTROCHIMICA ACTA, 2006, 52 (03) :1028-1032
[10]   Simple silica-particle template synthesis of mesoporous carbons [J].
Han, SJ ;
Hyeon, T .
CHEMICAL COMMUNICATIONS, 1999, (19) :1955-1956