An explicit upper bound for Weil-Petersson volumes of the moduli spaces of punctured Riemann surfaces

被引:16
作者
Grushevsky, S [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
10.1007/PL00004496
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An explicit upper bound for the Weil-Petersson volumes of punctured Riemann surfaces is obtained using Penner's combinatorial integration scheme from [4]. It is shown that for a fixed number of punctures n and for genus g increasing, lim(g --> infinity, n fixed) ln vol(W P) (M-g,(n))/g ln g less than or equal to 2, while this limit is exactly equal to two for n = 1.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 8 条
[1]  
Faber C., 1999, London Mathematical Society Lecture Note Series, P93
[2]   INTERSECTION THEORY ON THE MODULI SPACE OF CURVES [J].
KONTSEVICH, ML .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (02) :123-129
[3]   THE DECORATED TEICHMULLER SPACE OF PUNCTURED SURFACES [J].
PENNER, RC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (02) :299-339
[4]  
PENNER RC, 1992, J DIFFER GEOM, V35, P559
[5]  
Witten E., 1991, Surveys in Differential Geometry, P243, DOI DOI 10.4310/SDG.1990.V1.N1.A5
[6]   ON THE HOMOLOGY OF THE MODULI SPACE OF STABLE CURVES [J].
WOLPERT, S .
ANNALS OF MATHEMATICS, 1983, 118 (03) :491-523
[7]  
Zograf P. G., MATHAG9811026
[8]  
[No title captured]