Cultivation of Exoelectrogenic Bacteria in Conductive DNA Nanocomposite Hydrogels Yields a Programmable Biohybrid Materials System

被引:32
作者
Hu, Yong [1 ]
Rehnlund, David [2 ]
Klein, Edina [2 ]
Gescher, Johannes [1 ,2 ]
Niemeyer, Christof M. [1 ]
机构
[1] KIT, Inst Biol Interfaces IBG 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] KIT, IAB, D-76131 Karlsruhe, Germany
基金
瑞典研究理事会;
关键词
Carbon nanotubes; DNA; silica nanoparticles; nanocomposites; rolling circle amplification; Shewanella; extracellular electron transfer; ELECTRICAL-CONDUCTIVITY; SHEWANELLA-ONEIDENSIS; CARBON NANOTUBE; REDUCTION;
D O I
10.1021/acsami.9b22116
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The use of living microorganisms integrated within electrochemical devices is an expanding field of research, with applications in microbial fuel cells, microbial biosensors or bioreactors. We describe the use of porous nanocomposite materials prepared by DNA polymerization of carbon nanotubes (CNTs) and silica nanopartides (SiNPs) for the construction of a programmable biohybrid system containing the exoelectrogenic bacterium Shewanella oneidensis. We initially demonstrate the electrical conductivity of the CNT-containing DNA composite by employment of chronopotentiometry, electrochemical impedance spectroscopy, and cyclic voltammetry. Cultivation of Shewanella oneidensis in the conductive materials shows that the exoelectrogenic bacteria populate the matrix of the conductive composite, while nonexoelectrogenic Escherichia coli remain on its surface. Moreover, the ability to use extracellular electron transfer pathways is positively correlated with the number of cells within the conductive synthetic biofilm matrix. The Shewanella-containing composite remains stable for several days and shows electrochemical activity, indicating that the conductive backbone is capable of extracting the metabolic electrons produced by the bacteria under strictly anoxic conditions and conducting them to the anode. Programmability of this biohybrid material system is demonstrated by on-demand release and degradation induced by a short-term enzymatic stimulus. We believe that the application possibilities of such biohybrid materials could even go beyond microbial biosensors, bioreactors, and fuel cell systems.
引用
收藏
页码:14806 / 14813
页数:8
相关论文
共 36 条
[1]   Review on the Antimicrobial Properties of Carbon Nanostructures [J].
Al-Jumaili, Ahmed ;
Alancherry, Surjith ;
Bazaka, Kateryna ;
Jacob, Mohan V. .
MATERIALS, 2017, 10 (09)
[2]   Extracellular reduction of solid electron acceptors by Shewanella oneidensis [J].
Beblawy, Sebastian ;
Bursac, Thea ;
Paquete, Catarina ;
Louro, Ricardo ;
Clarke, Thomas A. ;
Gescher, Johannes .
MOLECULAR MICROBIOLOGY, 2018, 109 (05) :571-583
[3]   Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors [J].
Buecking, Clemens ;
Popp, Felix ;
Kerzenmacher, Sven ;
Gescher, Johannes .
FEMS MICROBIOLOGY LETTERS, 2010, 306 (02) :144-151
[4]   Biofuel cells and their development [J].
Bullen, RA ;
Arnot, TC ;
Lakeman, JB ;
Walsh, FC .
BIOSENSORS & BIOELECTRONICS, 2006, 21 (11) :2015-2045
[5]   Acetoin production via unbalanced fermentation in Shewanella oneidensis [J].
Bursac, Thea ;
Gralnick, Jeffrey A. ;
Gescher, Johannes .
BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (06) :1283-1289
[6]   Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins [J].
Costa, Nazua L. ;
Clarke, Thomas A. ;
Philipp, Laura-Alina ;
Gescher, Johannes ;
Louro, Ricardo O. ;
Paquete, Catarina M. .
BIORESOURCE TECHNOLOGY, 2018, 255 :308-317
[7]   Conducting hydrogels with enhanced mechanical strength [J].
Dai, Tingyang ;
Qing, Xutang ;
Lu, Yun ;
Xia, Youyi .
POLYMER, 2009, 50 (22) :5236-5241
[8]   Trends in Cell-Based Electrochemical Biosensors [J].
Ding, Lin ;
Du, Dan ;
Zhang, Xueji ;
Ju, Huangxian .
CURRENT MEDICINAL CHEMISTRY, 2008, 15 (30) :3160-3170
[9]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[10]   Dissimilatory iron reduction in Escherichia coli:: identification of CymA of Shewanella oneidensis and NapC of E-coli as ferric reductases [J].
Gescher, Johannes S. ;
Cordova, Carmen D. ;
Spormann, Alfred M. .
MOLECULAR MICROBIOLOGY, 2008, 68 (03) :706-719