Facile One-Pot Synthesis of Functional Gold Nanoparticle-Polymer Hybrids Using Ionic Block Copolymers as a Nanoreactor

被引:7
作者
Ahn, Hyungmin [1 ]
Park, Moon Jeong [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Chem, Div Adv Mat Sci WCU, Pohang 790784, South Korea
基金
新加坡国家研究基金会;
关键词
catalysis; ionic domains; nanoparticles; nanoreactors; surface plasmon resonance; THIN-FILMS; SIZE; NANOSTRUCTURES; CHEMISTRY; CATALYSIS; MICELLES; CLUSTERS;
D O I
10.1002/marc.201100449
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A highly versatile approach to fabricate functional gold nanoparticle (AuNP)-polymer hybrids is demonstrated by employing sulfonated block copolymers. The 35 nm sized ionic domain of the sulfonated poly(styrene-block-methylbutylene) (SnMBm) copolymers can be utilized as a nanoreactor where the Au ions can be selectively sequestered and reduced to AuNPs using a simple photochemical method. The size of the AuNPs can be adjusted in fine-steps from 2.0 +/- 0.3 to 3.9 +/- 0.5 nm by changing the sulfonation levels of the SnMBm copolymers. Remarkably, significantly improved methanol oxidation properties are achieved with the hybrid materials owing to the ion conductingSO3H groups and the interconnected network of AuNPs confined within the self-assembled microstructures, which provides electronic conductivity.
引用
收藏
页码:1790 / 1797
页数:8
相关论文
共 51 条
[1]   Formation of gold nanoparticles in polymethylmethacrylate by UV irradiation [J].
Abyaneh, Majid Kazemian ;
Paramanik, D. ;
Varma, S. ;
Gosavi, S. W. ;
Kulkarni, S. K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (12) :3771-3779
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   Interaction of polystyrene-block-poly(ethylene oxide) micelles with cationic surfactant in aqueous solutions.: Metal colloid formation in hybrid systems [J].
Bronstein, LM ;
Chernyshov, DM ;
Timofeeva, GI ;
Dubrovina, LV ;
Valetsky, PM ;
Obolonkova, ES ;
Khokhlov, AR .
LANGMUIR, 2000, 16 (08) :3626-3632
[4]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[5]   Gold nanocages: Engineering their structure for biomedical applications [J].
Chen, JY ;
Wiley, B ;
Li, ZY ;
Campbell, D ;
Saeki, F ;
Cang, H ;
Au, L ;
Lee, J ;
Li, XD ;
Xia, YN .
ADVANCED MATERIALS, 2005, 17 (18) :2255-2261
[6]  
Cheng WL, 2009, NAT MATER, V8, P519, DOI [10.1038/NMAT2440, 10.1038/nmat2440]
[7]   Support effect in high activity gold catalysts for CO oxidation [J].
Comotti, M ;
Li, WC ;
Spliethoff, B ;
Schüth, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (03) :917-924
[8]   Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices [J].
Corbierre, MK ;
Cameron, NS ;
Sutton, M ;
Mochrie, SGJ ;
Lurio, LB ;
Rühm, A ;
Lennox, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (42) :10411-10412
[9]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[10]   Redox-Active Ionic-Liquid-Assisted One-Step General Method for Preparing Gold Nanoparticle Thin Films: Applications in Refractive Index Sensing and Catalysis [J].
Dinda, Enakshi ;
Rashid, Md Harunar ;
Biswas, Mrinmoy ;
Mandal, Tarun K. .
LANGMUIR, 2010, 26 (22) :17568-17580