Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer 2008: a multi-model analysis based on POLMIP simulations

被引:38
作者
Arnold, S. R. [1 ]
Emmons, L. K. [2 ]
Monks, S. A. [1 ]
Law, K. S. [3 ,4 ]
Ridley, D. A. [5 ]
Turquety, S. [6 ]
Tilmes, S. [2 ]
Thomas, J. L. [3 ,4 ]
Bouarar, I. [3 ,4 ]
Flemming, J. [7 ]
Huijnen, V. [8 ]
Mao, J. [9 ,10 ]
Duncan, B. N. [11 ]
Steenrod, S. [11 ]
Yoshida, Y. [11 ]
Langner, J. [12 ]
Long, Y. [6 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England
[2] NCAR, Atmospher Chem Div, Boulder, CO USA
[3] Univ Versailles St Quentin, Univ Paris 06, Paris, France
[4] CNRS INSU, UMR 8190, Paris, France
[5] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
[6] CNRS, IPSL, Lab Meteorol Dynam, UMR8539, F-91128 Palaiseau, France
[7] ECMWF, Reading, Berks, England
[8] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands
[9] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA
[10] Natl Ocean & Atmospher Adm, Geophys Fluid Dynam Lab, Princeton, NJ USA
[11] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[12] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden
基金
美国国家航空航天局; 英国自然环境研究理事会; 美国国家科学基金会;
关键词
HIGH NORTHERN LATITUDES; PEROXYACETYL NITRATE PAN; GAS-PHASE REACTIONS; ATMOSPHERIC CHEMISTRY; PHOTOCHEMICAL DATA; POLLUTION TRANSPORT; ARCTIC TROPOSPHERE; SOURCE ATTRIBUTION; LAGRANGIAN MODEL; CLIMATE-CHANGE;
D O I
10.5194/acp-15-6047-2015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We have evaluated tropospheric ozone enhancement in air dominated by biomass burning emissions at high latitudes (>50 degrees N) in July 2008, using 10 global chemical transport model simulations from the POLMIP multimodel comparison exercise. In model air masses dominated by fire emissions, Delta O-3/Delta CO values ranged between 0.039 and 0.196 ppbv ppbv(-1) (mean: 0.113 ppbv ppbv(-1)) in freshly fire-influenced air, and between 0.140 and 0.261 ppbv ppb(-1) (mean: 0.193 ppbv) in more aged fire-influenced air. These values are in broad agreement with the range of observational estimates from the literature. Model Delta PAN/Delta CO enhancement ratios show distinct groupings according to the meteorological data used to drive the models. ECMWF-forced models produce larger Delta PAN/Delta CO values (4.47 to 7.00 pptv ppbv(-1)) than GEOS5-forced models (1.87 to 3.28 pptv ppbv(-1)), which we show is likely linked to differences in efficiency of vertical transport during poleward export from mid-latitude source regions. Simulations of a large plume of biomass burning and anthropogenic emissions exported from towards the Arctic using a Lagrangian chemical transport model show that 4-day net ozone change in the plume is sensitive to differences in plume chemical composition and plume vertical position among the POLMIP models. In particular, Arctic ozone evolution in the plume is highly sensitive to initial concentrations of PAN, as well as oxygenated VOCs (acetone, acetaldehyde), due to their role in producing the peroxyacetyl radical PAN precursor. Vertical displacement is also important due to its effects on the stability of PAN, and subsequent effect on NOx abundance. In plumes where net ozone production is limited, we find that the lifetime of ozone in the plume is sensitive to hydrogen peroxide loading, due to the production of HOx from peroxide photolysis, and the key role of HO2 + O-3 in controlling ozone loss. Overall, our results suggest that emissions from biomass burning lead to large-scale photochemical enhancement in high-latitude tropospheric ozone during summer.
引用
收藏
页码:6047 / 6068
页数:22
相关论文
共 60 条
[1]   Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations [J].
Alvarado, M. J. ;
Logan, J. A. ;
Mao, J. ;
Apel, E. ;
Riemer, D. ;
Blake, D. ;
Cohen, R. C. ;
Min, K-E ;
Perring, A. E. ;
Browne, E. C. ;
Wooldridge, P. J. ;
Diskin, G. S. ;
Sachse, G. W. ;
Fuelberg, H. ;
Sessions, W. R. ;
Harrigan, D. L. ;
Huey, G. ;
Liao, J. ;
Case-Hanks, A. ;
Jimenez, J. L. ;
Cubison, M. J. ;
Vay, S. A. ;
Weinheimer, A. J. ;
Knapp, D. J. ;
Montzka, D. D. ;
Flocke, F. M. ;
Pollack, I. B. ;
Wennberg, P. O. ;
Kurten, A. ;
Crounse, J. ;
St Clair, J. M. ;
Wisthaler, A. ;
Mikoviny, T. ;
Yantosca, R. M. ;
Carouge, C. C. ;
Le Sager, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (20) :9739-9760
[2]   BIOMASS-BURNING EMISSIONS AND ASSOCIATED HAZE LAYERS OVER AMAZONIA [J].
ANDREAE, MO ;
BROWELL, EV ;
GARSTANG, M ;
GREGORY, GL ;
HARRISS, RC ;
HILL, GF ;
JACOB, DJ ;
PEREIRA, MC ;
SACHSE, GW ;
SETZER, AW ;
DIAS, PLS ;
TALBOT, RW ;
TORRES, AL ;
WOFSY, SC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1988, 93 (D2) :1509-1527
[3]   Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species [J].
Atkinson, R. ;
Baulch, D. L. ;
Cox, R. A. ;
Crowley, J. N. ;
Hampson, R. F. ;
Hynes, R. G. ;
Jenkin, M. E. ;
Rossi, M. J. ;
Troe, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3625-4055
[4]   Evaluated kinetic and photochemical data for atmospheric chemistry:: Volume I -: gas phase reactions of Ox, HOx, NOx and SOx species [J].
Atkinson, R ;
Baulch, DL ;
Cox, RA ;
Crowley, JN ;
Hampson, RF ;
Hynes, RG ;
Jenkin, ME ;
Rossi, MJ ;
Troe, J .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2004, 4 :1461-1738
[5]   PHOBEA/ITCT 2002 airborne observations of transpacific transport of ozone, CO, volatile organic compounds, and aerosols to the northeast Pacific:: Impacts of Asian anthropogenic and Siberian boreal fire emissions -: art. no. D23S12 [J].
Bertschi, IT ;
Jaffe, DA ;
Jaeglé, L ;
Price, HU ;
Dennison, JB .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D23) :1-16
[6]   Forests and climate change: Forcings, feedbacks, and the climate benefits of forests [J].
Bonan, Gordon B. .
SCIENCE, 2008, 320 (5882) :1444-1449
[7]   Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions [J].
Bourgeois, Quentin ;
Bey, Isabelle .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[8]   HYDROCARBON INVOLVEMENT IN PHOTOCHEMICAL SMOG FORMATION IN LOS-ANGELES ATMOSPHERE [J].
CALVERT, JG .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1976, 10 (03) :256-262
[9]  
Ciais P., 2013, CLIM CHANG 2013 PHYS, P465, DOI DOI 10.1017/CBO9781107415324.015
[10]   Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V - heterogeneous reactions on solid substrates [J].
Crowley, J. N. ;
Ammann, M. ;
Cox, R. A. ;
Hynes, R. G. ;
Jenkin, M. E. ;
Mellouki, A. ;
Rossi, M. J. ;
Troe, J. ;
Wallington, T. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (18) :9059-9223