Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations

被引:50
作者
Badulescu, Alexandru Ioan [1 ]
机构
[1] Univ Poitiers, UFR Sci SP2MI, Dept Math, F-86962 Futuroscope, France
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00222-007-0104-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize the local Jacquet-Langlands correspondence to all unitary irreducible representations. We prove the global Jacquet-Langlands correspondence in characteristic zero. As consequences we obtain the multiplicity one and strong multiplicity one Theorems for inner forms of GL(n) as well as a classification of the residual spectrum and automorphic representations in analogy with results proved by Moeglin-Waldspurger and Jacquet-Shalika for GL(n).
引用
收藏
页码:383 / 438
页数:56
相关论文
共 49 条
[1]  
Arthur J., 1989, ANN MATH STUDIES, V120
[4]  
Badulescu A. I., 2004, Glasnik Matematicki, Serija III, V39, P49, DOI 10.3336/gm.39.1.05
[5]   A theorum of finitude in the automorphic spectrum for the interior forms of GLn on a global body [J].
Badulescu, AI .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :651-657
[6]   The Jacquet-Langlands correspondence in non-Zero characteristic [J].
Badulescu, AI .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (05) :695-747
[7]   A theorem of finitude [J].
Badulescu, AI ;
Broussous, P .
COMPOSITIO MATHEMATICA, 2002, 132 (02) :177-190
[8]  
Badulescu AI, 2000, MANUSCRIPTA MATH, V101, P49, DOI 10.1007/s002290050004
[9]  
BADULESCU AI, 2007, VARIOUS PUBL SER AAR, V48, P9
[10]   Jacquet-Langlands and unitarisability [J].
Badulescu, Alexandru Ioan .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2007, 6 (03) :349-379