Banach Actions Preserving Unconditional Convergence

被引:1
作者
Banakh, Taras [1 ,2 ]
Kadets, Vladimir [3 ]
机构
[1] Ivan Franko Natl Univ Lviv, Fac Mehcan & Math, Universytetska 1, UA-79000 Lvov, Ukraine
[2] Jan Kochanowski Univ Kielce, Katedra Matemat, Uniwersytecka 7, PL-25406 Kielce, Poland
[3] Kharkov Natl Univ, Sch Math & Informat, 4 Svobody Sq, UA-61022 Kharkiv, Ukraine
基金
新加坡国家研究基金会;
关键词
Banach action; unconditional convergence; absolutely summing operator;
D O I
10.3390/axioms11010013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A,X,Y be Banach spaces and AxX & RARR;Y, (a,x)?ax be a continuous bilinear function, called a Banach action. We say that this action preserves unconditional convergence if for every bounded sequence (an)n & ISIN;omega in A and unconditionally convergent series n-ary sumation n & ISIN;omega xn in X, the series n-ary sumation n & ISIN;omega anxn is unconditionally convergent in Y. We prove that a Banach action AxX & RARR;Y preserves unconditional convergence if and only if for any linear functional y*& ISIN;Y* the operator Dy*:X & RARR;A*, Dy*(x)(a)=y*(ax) is absolutely summing. Combining this characterization with the famous Grothendieck theorem on the absolute summability of operators from l1 to l2, we prove that a Banach action AxX & RARR;Y preserves unconditional convergence if A is a Hilbert space possessing an orthonormal basis (en)n & ISIN;omega such that for every x & ISIN;X, the series n-ary sumation n & ISIN;omega enx is weakly absolutely convergent. Applying known results of Garling on the absolute summability of diagonal operators between sequence spaces, we prove that for (finite or infinite) numbers p,q,r & ISIN;[1,& INFIN;] with 1r & LE;1p+1q, the coordinatewise multiplication lpxlq & RARR;lr preserves unconditional convergence if and only if one of the following conditions holds: (i) p & LE;2 and q & LE;r, (ii) 2
引用
收藏
页数:9
相关论文
共 12 条
  • [1] Banakh T., 2021, ARXIV200909676
  • [2] SCHUR MULTIPLIERS
    BENNETT, G
    [J]. DUKE MATHEMATICAL JOURNAL, 1977, 44 (03) : 603 - 639
  • [3] Boyko N, 2008, MAT APPL MATH MEKH, V826, P197
  • [4] Diestel J., 1984, SEQUENCES SERIES BAN
  • [5] Diestel J., 1995, ABSOLUTELY SUMMING O, DOI DOI 10.1017/CBO9780511526138
  • [6] Fernandez C.S., 1996, INT J MATH MATH SCI, V19, P407
  • [7] GARLING DJH, 1974, STUD MATH, V51, P129
  • [8] Grothendieck A., 1953, B SOC MAT SAO PAOLO, V8, P1
  • [9] Kadets M, 1997, SERIES BANACH SPACES
  • [10] Lindenstrauss J., 1977, CLASSICAL BANACH SPA, Vthird