Commuting Dual Toeplitz Operators on the Harmonic Dirichlet Space

被引:5
作者
Yang, Jing Yu [1 ]
Hu, Yin Yin [2 ]
Lu, Yu Feng [2 ]
Yu, Tao [2 ]
机构
[1] Chifeng Univ, Sch Math Stat, Chifeng 024000, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Dual Toeplitz operator; harmonic Dirichlet space; commutativity; PLURIHARMONIC SYMBOLS; ORTHOGONAL COMPLEMENT; ALGEBRAIC PROPERTIES; BERGMAN SPACES; COMMUTANTS;
D O I
10.1007/s10114-016-5663-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we characterize the symbols for (semi-)commuting dual Toeplitz operators on the orthogonal complement of the harmonic Dirichlet space. We show that for phi, psi is an element of W (1,infinity), S phi S psi = S psi S phi on (D-h )(perpendicular to) if and only if phi and psi satisfy one of the following conditions: (1) Both phi and psi are harmonic functions; (2) There exist complex constants alpha and beta, not both 0, such that phi = alpha psi+beta.
引用
收藏
页码:1099 / 1105
页数:7
相关论文
共 30 条
[1]   Commutants of analytic Toeplitz operators on the Bergman space [J].
Axler, S ;
Cuckovic, Z ;
Rao, NV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :1951-1953
[2]   COMMUTING TOEPLITZ-OPERATORS WITH HARMONIC SYMBOLS [J].
AXLER, S ;
CUCKOVIC, Z .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1991, 14 (01) :1-12
[3]  
Brown A., 1964, J. Reine. Angew. Math, V213, P89
[4]   Algebraic Properties of Toeplitz Operators on the Harmonic Dirichlet Space [J].
Chen, Yong ;
Lee, Young Joo ;
Quang Dieu Nguyen .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 69 (02) :183-201
[5]  
Cheng G., 2011, CHIN Q J MATH, V27, P1725
[6]   PLURIHARMONIC SYMBOLS OF COMMUTING TOEPLITZ-OPERATORS [J].
CHOE, BR ;
LEE, YJ .
ILLINOIS JOURNAL OF MATHEMATICS, 1993, 37 (03) :424-436
[7]  
Choe BR, 2006, J KOREAN MATH SOC, V43, P259
[8]   Commutants of analytic Toeplitz operators on the harmonic Bergman space [J].
Choe, BR ;
Lee, YJ .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 50 (04) :559-564
[9]   Pluriharmonic symbols of essentially commuting Toeplitz operators [J].
Choe, BR ;
Lee, YJ .
ILLINOIS JOURNAL OF MATHEMATICS, 1998, 42 (02) :280-293
[10]   Commuting Toeplitz operators on the polydisk [J].
Choe, BR ;
Koo, H ;
Lee, YJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (05) :1727-1749