General helices in the three-dimensional Lorentzian space forms

被引:59
作者
Barros, M [1 ]
Ferrández, A
Lucas, P
Meroño, MA
机构
[1] Univ Granada, Dept Geometria & Topol, Granada, Spain
[2] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
关键词
general helix; Lorentzian space form; killing fields along curves; solving natural equations problems;
D O I
10.1216/rmjm/1020171565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some Lancret-type theorems for general helices in the three-dimensional Lorentzian space forms which show remarkable differences with regard to the same question in Riemannian space forms. The key point will be the problem of solving natural equations. We give a geometric approach to that problem and show that general helices in the three-dimensional Lorentz-Minkowskian space are geodesics either of right general cylinders or of flat B-scrolls. In this sense the anti De Sitter and De Sitter worlds behave as the spherical and hyperbolic space forms, respectively.
引用
收藏
页码:373 / 388
页数:16
相关论文
共 11 条
[1]  
Alias L.J., 1994, TOKYO J MATH, V17, P447
[2]  
[Anonymous], 1977, ELEMENTS DIFFERENTIA
[3]   General helices and a theorem of Lancret [J].
Barros, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (05) :1503-1509
[4]  
BARROS M, 1995, CR ACAD SCI I-MATH, V321, P505
[5]  
BARROS M, 1999, NEW APPROACHES NONLI, P51
[6]   ON SURFACES IN THE 3-DIMENSIONAL LORENTZ-MINKOWSKI SPACE [J].
FERRANDEZ, A ;
LUCAS, P .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (01) :93-100
[7]   CODIMENSION ONE ISOMETRIC IMMERSIONS BETWEEN LORENTZ SPACES [J].
GRAVES, LK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 252 (AUG) :367-392
[8]   LOCAL GEOMETRIC INVARIANTS OF INTEGRABLE EVOLUTION-EQUATIONS [J].
LANGER, J ;
PERLINE, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) :1732-1737
[9]  
LANGER J, 1984, J DIFFER GEOM, V20, P1
[10]  
Langer J., 1991, J. Nonlinear Sci, V1, P71