Departures from eustasy in Pliocene sea-level records

被引:0
作者
Raymo, Maureen E. [1 ]
Mitrovica, Jerry X. [2 ]
O'Leary, Michael J. [3 ]
DeConto, Robert M. [4 ]
Hearty, Paul L. [5 ]
机构
[1] Boston Univ, Dept Earth Sci, Boston, MA 02215 USA
[2] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[3] Notre Dame Univ, Sch Arts & Sci, Fremantle, WA 6959, Australia
[4] Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA
[5] Univ N Carolina, Dept Environm Sci, Wilmington, NC 28403 USA
基金
美国国家科学基金会;
关键词
MIDDLE PLIOCENE; MANTLE VISCOSITY; ICE THICKNESS; CLIMATE; OCEANS; MODEL; EARTH; GCM;
D O I
10.1038/NGEO1118
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Proxy data suggest that atmospheric CO2 levels during the middle of the Pliocene epoch (about 3 Myr ago) were similar to today, leading to the use of this interval as a potential analogue for future climate change. Estimates for mid-Pliocene sea levels range from 10 to 40m above present, and a value of +25m is often adopted in numerical climate model simulations. A eustatic change of such magnitude implies the complete deglaciation of the West Antarctic and Greenland ice sheets, and significant loss of mass in the East Antarctic ice sheet. However, the effects of glacial isostatic adjustments have not been accounted for in Pliocene sea-level reconstructions. Here we numerically model these effects on Pliocene shoreline features using a gravitationally self-consistent treatment of post-glacial sea-level change. We find that the predicted modern elevation of Pliocene shoreline features can deviate significantly from the eustatic signal, even in the absence of subsequent tectonically-driven movements of the Earth's surface. In our simulations, this non-eustatic sea-level change, at individual locations, is caused primarily by residual isostatic adjustments associated with late Pleistocene glaciation. We conclude that a combination of model results and field observations can help to better constrain sea level in the past, and hence lend insight into the stability of ice sheets under varying climate conditions.
引用
收藏
页码:328 / 332
页数:5
相关论文
共 50 条
[41]   Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea [J].
Ferrier, Ken L. ;
Mitrovica, Jerry X. ;
Giosan, Liviu ;
Clift, Peter D. .
EARTH AND PLANETARY SCIENCE LETTERS, 2015, 416 :12-20
[42]   Contemporary sea-level changes from global to local scales: a review [J].
Cazenave, Anny ;
Moreira, Lorena .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2261)
[43]   Fate of water pumped from underground and contributions to sea-level rise [J].
Wada, Yoshihide ;
Lo, Min-Hui ;
Yeh, Pat J. -F. ;
Reager, John T. ;
Famiglietti, James S. ;
Wu, Ren-Jie ;
Tseng, Yu-Heng .
NATURE CLIMATE CHANGE, 2016, 6 (08) :777-+
[44]   The Paris Climate Agreement and future sea-level rise from Antarctica [J].
DeConto, Robert M. ;
Pollard, David ;
Alley, Richard B. ;
Velicogna, Isabella ;
Gasson, Edward ;
Gomez, Natalya ;
Sadai, Shaina ;
Condron, Alan ;
Gilford, Daniel M. ;
Ashe, Erica L. ;
Kopp, Robert E. ;
Li, Dawei ;
Dutton, Andrea .
NATURE, 2021, 593 (7857) :83-+
[45]   Sea-level rise from glaciers and ice caps: A lower bound [J].
Bahr, David B. ;
Dyurgerov, Mark ;
Meier, Mark F. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[46]   Numerical modeling of icehouse and greenhouse sea-level changes on a continental margin: Sea-level modulation of deltaic avulsion processes [J].
Harris, Ashley D. ;
Covault, Jacob A. ;
Baumgardner, Sarah ;
Sun, Tao ;
Granjeon, Didier .
MARINE AND PETROLEUM GEOLOGY, 2020, 111 :807-814
[47]   Sea-level changes and water structures between 3.5 and 2.8 Ma in the central part of the Japan Sea Borderland: Analyses of fossil Ostracoda from the Pliocene Kuwae Formation, central Japan [J].
Irizuki, Toshiaki ;
Kusumoto, Mayumi ;
Ishida, Katsura ;
Tanaka, Yuichiro .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2007, 245 (3-4) :421-443
[48]   The Framework for Assessing Changes To Sea-level (FACTS) v1.0: a platform for characterizing parametric and structural uncertainty in future global, relative, and extreme sea-level change [J].
Kopp, Robert E. ;
Garner, Gregory G. ;
Hermans, Tim H. J. ;
Jha, Shantenu ;
Kumar, Praveen ;
Reedy, Alexander ;
Slangen, Aimee B. A. ;
Turilli, Matteo ;
Edwards, Tamsin L. ;
Gregory, Jonathan M. ;
Koubbe, George ;
Levermann, Anders ;
Merzky, Andre ;
Nowicki, Sophie ;
Palmer, Matthew D. ;
Smith, Chris .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (24) :7461-7489
[49]   A 500 kyr record of global sea-level oscillations in the Gulf of Lion, Mediterranean Sea: new insights into MIS 3 sea-level variability [J].
Frigola, J. ;
Canals, M. ;
Cacho, I. ;
Moreno, A. ;
Sierro, F. J. ;
Flores, J. A. ;
Berne, S. ;
Jouet, G. ;
Dennielou, B. ;
Herrera, G. ;
Pasqual, C. ;
Grimalt, J. O. ;
Galavazi, M. ;
Schneider, R. .
CLIMATE OF THE PAST, 2012, 8 (03) :1067-1077
[50]   Paleo sea-level changes and relative sea-level indicators: Precise measurements, indicative meaning and glacial isostatic adjustment perspectives from Mallorca (Western Mediterranean) [J].
Lorscheid, Thomas ;
Stocchi, Paolo ;
Casella, Elisa ;
Gomez-Pujol, Lluis ;
Vacchi, Matteo ;
Mann, Thomas ;
Rovere, Alessio .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2017, 473 :94-107