Existence implies uniqueness for a class of singular anisotropic elliptic boundary value problems

被引:0
作者
St Cîrstea, F [1 ]
Radulescu, VD [1 ]
机构
[1] Univ Craiova, Dept Math, Craiova 1100, Romania
关键词
Boundary conditions - Equivalence classes - Linear equations - Set theory - Theorem proving - Two dimensional;
D O I
10.1002/mma.241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singular anisotropic quasilinear problem with Dirichlet boundary condition and we establish two sufficient conditions for the uniqueness of the solution, provided such a solution exists. The proofs use elementary tools and they are based on a general comparison lemma combined with the generalized mean value theorem. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:771 / 779
页数:9
相关论文
共 7 条
[1]   An elliptic problem arising from the unsteady transonic small disturbance equation [J].
Canic, S ;
Keyfitz, BL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (02) :548-574
[2]   ON A SINGULAR QUASI-LINEAR ANISOTROPIC ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
CHOI, YS ;
LAZER, AC ;
MCKENNA, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (07) :2633-2641
[3]   A singular quasilinear anisotropic elliptic boundary value problem. II [J].
Choi, YS ;
McKenna, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) :2925-2937
[4]  
DING S, 2000, DIFFERENTIAL INTEGRA, V13, P227
[5]   Existence and uniqueness theorems for singular anisotropic quasilinear elliptic boundary value problems [J].
Hill, S ;
Moore, KS ;
Reichel, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (06) :1673-1683
[6]   Uniqueness of solution to a singular quasilinear elliptic problem [J].
Lair, AV ;
Shaker, AW .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :489-493
[7]  
REICHEL W, 1997, INT SERIES NUMERICAL, P375