POINT WISE CONVERGENCE AND SEMIGROUPS ACTING ON VECTOR-VALUED FUNCTIONS

被引:4
作者
Cowling, Michael G. [1 ]
Leinert, Michael [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Heidelberg, Inst Angew Math, D-69120 Heidelberg, Germany
关键词
semigroups; vector-valued; pointwise convergence;
D O I
10.1017/S0004972710002030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A submarkovian C(0) semigroup (T(t))(t is an element of R+) acting on the scale of complex-valued functions L(p)(X, C) extends to a semigroup of operators on the scale of vector-valued function spaces L(p)(X, E), when E is a Banach space. It is known that, if f is an element of L(p)(X, C), where 1 < p < infinity, then T(t) f -> f pointwise almost everywhere. We show that the same holds when f is an element of L(p)(X, E).
引用
收藏
页码:44 / 48
页数:5
相关论文
共 5 条
[1]  
[Anonymous], 1970, ANN MATH STUD
[2]   HARMONIC-ANALYSIS ON SEMIGROUPS [J].
COWLING, MG .
ANNALS OF MATHEMATICS, 1983, 117 (02) :267-283
[3]  
Kunstmann PC, 2004, LECT NOTES MATH, V1855, P65
[4]   ANALYTICITY OF SUBMARKOVIAN SEMIGROUPS [J].
LISKEVICH, VA ;
PERELMUTER, MA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1097-1104
[5]   Pointwise convergence for semigroups in vector-valued Lp spaces [J].
Taggart, Robert J. .
MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (04) :933-949