Online Locomotion Planner For Wheeled Quadrupedal Robot Using Deviation Based Scheduler

被引:0
作者
Zhang, Zhihao [1 ,2 ]
Meng, Fei [1 ,2 ]
Wang, Lei [1 ,2 ]
Kang, Ru [1 ,2 ]
Gu, Sai [1 ,2 ]
Liu, Botao [1 ,2 ]
Fan, Xuxiao [1 ,2 ]
Ming, Aiguo [2 ,3 ]
Huang, Qiang [1 ,2 ]
机构
[1] Beijing Inst Technol, Intelligent Robot Inst, Sch Mechatron Engn, 5 Nandajie, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Adv Innovat Ctr Intelligent Robots & Syst, Beijing, Peoples R China
[3] Univ Electrocommun, Dept Mech Engn & Intelligent Syst, Tokyo, Japan
来源
2021 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2021) | 2021年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1109/ICARM52023.2021.9536161
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wheel-legged robots have the potential of highly dynamic locomotion. The development of Wheel-legged robots might extend the capabilities and provide a solution to the challenges of legged robots. We first modeled our self-developed quadruped experimental platform and expanded our previous work. For the scene of long-range and high-speed movement, we propose a deviation-based online locomotion planner to improve the efficiency and stability of a wheeled quadrupedal robot by reducing unnecessary steps. In the process, relative deviation values are obtained by comparing the ideal foothold reference with the actual wheel position and used to generate locomotion commands. With a control framework of robot locomotion based on a whole-body controller, the robot can move stably for a long distance in the simulation environment. The simulation results also show that compared with the time-based scheduler, this approach has advantages in efficiency and stability.
引用
收藏
页码:735 / 740
页数:6
相关论文
共 10 条
[1]   Advances in real-world applications for legged robots [J].
Bellicoso, C. Dario ;
Bjelonic, Marko ;
Wellhausen, Lorenz ;
Holtmann, Kai ;
Guenther, Fabian ;
Tranzatto, Marco ;
Fankhauser, Peter ;
Hutter, Marco .
JOURNAL OF FIELD ROBOTICS, 2018, 35 (08) :1311-1326
[2]   Rolling in the Deep - Hybrid Locomotion for Wheeled-Legged Robots Using Online Trajectory Optimization [J].
Bjelonic, Marko ;
Sankar, Prajish K. ;
Bellicoso, C. Dario ;
Vallery, Heike ;
Hutter, Marco .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) :3626-3633
[3]  
Bledt G, 2018, IEEE INT C INT ROBOT, P2245, DOI 10.1109/IROS.2018.8593885
[4]   Whole-body impedance control of wheeled mobile manipulators [J].
Dietrich, Alexander ;
Bussmann, Kristin ;
Petit, Florian ;
Kotyczka, Paul ;
Ott, Christian ;
Lohmann, Boris ;
Albu-Schaeffer, Alin .
AUTONOMOUS ROBOTS, 2016, 40 (03) :505-517
[5]  
Eckert P, 2015, IEEE INT CONF ROBOT, P3128, DOI 10.1109/ICRA.2015.7139629
[6]  
Giordano PR, 2009, IEEE INT CONF ROBOT, P2809
[7]  
Hutter M, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P38, DOI 10.1109/IROS.2016.7758092
[8]  
Raibert M., 2008, IFAC P VOL, V41, P10822, DOI [10.3182/20080706-5-kr-1001.01833, 10.3182/20080706-5-KR-1001.01833, DOI 10.3182/20080706-5-KR-1001.01833]
[9]  
Reid W, 2016, IEEE INT CONF ROBOT, P5596, DOI 10.1109/ICRA.2016.7487777
[10]   Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max [J].
Semini, Claudio ;
Barasuol, Victor ;
Goldsmith, Jake ;
Frigerio, Marco ;
Focchi, Michele ;
Gao, Yifu ;
Caldwell, Darwin G. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (02) :635-646