Impact of the Atmospheric Photochemical Evolution of the Organic Component of Biomass Burning Aerosol on Its Radiative Forcing Efficiency: A Box Model Analysis

被引:9
作者
Zhuravleva, Tatiana B. [1 ]
Nasrtdinov, Ilmir M. [1 ]
Konovalov, Igor B. [2 ]
Golovushkin, Nikolai A. [2 ]
Beekmann, Matthias [3 ]
机构
[1] VE Zuev Inst Atmospher Opt SB RAS, Academician Zuev Sq 1, Tomsk 634055, Russia
[2] Russian Acad Sci, Inst Appl Phys, 46 Ulyanov Str, Nizhnii Novgorod 603950, Russia
[3] CNRS, Lab Interuniv Syst Atmospher LISA, F-75016 Paris, France
关键词
biomass burning; organic aerosol; microphysical model; volatility basis set; Mie theory calculations; radiative transfer model; aerosol radiative forcing efficiency; EXTREME FIRE EVENT; OPTICAL-PROPERTIES; BROWN CARBON; SMOKE AEROSOL; SATELLITE-OBSERVATIONS; SOFTWARE PACKAGE; EMISSIONS; CHEMISTRY; VOLATILITY; ABSORPTION;
D O I
10.3390/atmos12121555
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present the first box model simulation results aimed at identification of possible effects of the atmospheric photochemical evolution of the organic component of biomass burning (BB) aerosol on the aerosol radiative forcing (ARF) and its efficiency (ARFE). The simulations of the dynamics of the optical characteristics of the organic aerosol (OA) were performed using a simple parameterization developed within the volatility basis set framework and adapted to simulate the multiday BB aerosol evolution in idealized isolated smoke plumes from Siberian fires (without dilution). Our results indicate that the aerosol optical depth can be used as a good proxy for studying the effect of the OA evolution on the ARF, but variations in the scattering and absorbing properties of BB aerosol can also affect its radiative effects, as evidenced by variations in the ARFE. Changes in the single scattering albedo (SSA) and asymmetry factor, which occur as a result of the BB OA photochemical evolution, may either reduce or enhance the ARFE as a result of their competing effects, depending on the initial concentration OA, the ratio of black carbon to OA mass concentrations and the aerosol photochemical age in a complex way. Our simulation results also reveal that (1) the ARFE at the top of the atmosphere is not significantly affected by the OA oxidation processes compared to the ARFE at the bottom of the atmosphere, and (2) the dependence of ARFE in the atmospheric column and on the BB aerosol photochemical ages almost mirrors the corresponding dependence of SSA.
引用
收藏
页数:21
相关论文
共 106 条
[81]   Global transformation and fate of SOA: Implications of low-volatility SOA and gas-phase fragmentation reactions [J].
Shrivastava, Manish ;
Easter, Richard C. ;
Liu, Xiaohong ;
Zelenyuk, Alla ;
Singh, Balwinder ;
Zhang, Kai ;
Ma, Po-Lun ;
Chand, Duli ;
Ghan, Steven ;
Jimenez, Jose L. ;
Zhang, Qi ;
Fast, Jerome ;
Rasch, Philip J. ;
Tiitta, Petri .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (09) :4169-4195
[82]  
SLINGO A, 1989, J ATMOS SCI, V46, P1419, DOI 10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO
[83]  
2
[84]   Effect of hydrophobic primary organic aerosols on secondary organic aerosol formation from ozonolysis of α-pinene [J].
Song, Chen ;
Zaveri, Rahul A. ;
Alexander, M. Lizabeth ;
Thornton, Joel A. ;
Madronich, Sasha ;
Ortega, John V. ;
Zelenyuk, Alla ;
Yu, Xiao-Ying ;
Laskin, Alexander ;
Maughan, David A. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (20)
[85]   Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set [J].
Stefenelli, Giulia ;
Jiang, Jianhui ;
Bertrand, Amelie ;
Bruns, Emily A. ;
Pieber, Simone M. ;
Baltensperger, Urs ;
Marchand, Nicolas ;
Aksoyoglu, Sebnem ;
Prevot, Andre S. H. ;
Slowik, Jay G. ;
El Haddad, Imad .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (17) :11461-11484
[86]   Radiative impact of boreal smoke in the Arctic: Observed and modeled [J].
Stone, R. S. ;
Anderson, G. P. ;
Shettle, E. P. ;
Andrews, E. ;
Loukachine, K. ;
Dutton, E. G. ;
Schaaf, C. ;
Roman, M. O., III .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D14)
[87]   Lidar signal simulation for the evaluation of aerosols in chemistry transport models [J].
Stromatas, S. ;
Turquety, S. ;
Menut, L. ;
Chepfer, H. ;
Pere, J. C. ;
Cesana, G. ;
Bessagnet, B. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2012, 5 (06) :1543-1564
[88]   The effect of South American biomass burning aerosol emissions on the regional climate [J].
Thornhill, Gillian D. ;
Ryder, Claire L. ;
Highwood, Eleanor J. ;
Shaffrey, Len C. ;
Johnson, Ben T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (08) :5321-5342
[89]   Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia [J].
Tian, Pengfei ;
Zhang, Lei ;
Ma, Jianmin ;
Tang, Kai ;
Xu, Lili ;
Wang, Yuan ;
Cao, Xianjie ;
Liang, Jiening ;
Ji, Yuemeng ;
Jiang, Jonathan H. ;
Yung, Yuk L. ;
Zhang, Renyi .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (11) :7815-7825
[90]  
Tomasi C., 2013, RADIATIVE TRANSFER L, VVolume 8, P505, DOI [10.1007/978-3-642-32106-1_11, DOI 10.1007/978-3-642-32106-1_11]