Optimal Strategy Estimation of Random Evolutionary Boolean Games

被引:15
作者
Ding, Xueying [1 ]
Li, Haitao [2 ]
Lu, Jianquan [1 ]
Wang, Shuling [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[2] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Games; Game theory; Mean square error methods; State estimation; Matrix converters; Economics; Dynamical systems; Minimum mean-square error (MMSE); random evolutionary Boolean game; semitensor product (STP) of matrices; strategy estimation; NETWORKS; CONTROLLABILITY; STABILIZATION; STABILITY;
D O I
10.1109/TCYB.2021.3050192
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The optimal strategy estimation of random evolutionary Boolean games (REBGs) is discussed in this article. First, using the minimum mean square error criterion, the optimal strategy estimator is proposed for REBGs. Then, a matrix approach is developed to calculate the optimal strategy estimator by the aid of a semitensor product of matrices, which includes the prediction matrix, updating distribution, and strategy iterative formula. Finally, an elucidative example is included to show the obtained results are valid.
引用
收藏
页码:7899 / 7905
页数:7
相关论文
共 38 条
[1]   Random Boolean networks and evolutionary game theory [J].
Alexander, JM .
PHILOSOPHY OF SCIENCE, 2003, 70 (05) :1289-1304
[2]   Robust synthetic biology design: stochastic game theory approach [J].
Chen, Bor-Sen ;
Chang, Chia-Hung ;
Lee, Hsiao-Ching .
BIOINFORMATICS, 2009, 25 (14) :1822-1830
[3]   Stabilization, Controllability and Optimal Control of Boolean Networks With Impulsive Effects and State Constraints [J].
Chen, Hao ;
Li, Xingde ;
Sun, Jitao .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (03) :806-811
[4]   State Estimation for Stochastic Time-Varying Boolean Networks [J].
Chen, Hongwei ;
Wang, Zidong ;
Liang, Jinling ;
Li, Maozhen .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (12) :5480-5487
[5]  
Cheng D, 2012, An Introduction to Semi-Tensor Product of Matrices and Its Applications
[6]   Modeling, Analysis and Control of Networked Evolutionary Games [J].
Cheng, Daizhan ;
He, Fenghua ;
Qi, Hongsheng ;
Xu, Tingting .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) :2402-2415
[7]  
Cheng DH, 2011, COMMUN CONTROL ENG, P1, DOI 10.1007/978-0-85729-097-7
[8]   Evolutionary game theory on measure spaces: Well-posedness [J].
Cleveland, John ;
Ackleh, Azmy S. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :785-797
[9]   Stochastic stability and stabilization of n-person random evolutionary Boolean games [J].
Ding, Xueying ;
Li, Haitao ;
Yang, Qiqi ;
Zhou, Yingrui ;
Alsaedi, Ahmed ;
Alsaadi, Fuad E. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 306 :1-12
[10]   Observability, Reconstructibility and State Observers of Boolean Control Networks [J].
Fornasini, Ettore ;
Valcher, Maria Elena .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (06) :1390-1401