Holomorphic potentials and multipliers for Hardy-Sobolev spaces

被引:2
作者
Cascante, C. [1 ]
Fabrega, J. [1 ]
Ortega, J. M. [1 ]
机构
[1] Univ Barcelona, Fac Matemat, Barcelona, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2015年 / 177卷 / 02期
关键词
Nonlinear holomorphic potentials; Multipliers; Hardy-Sobolev spaces; SETS; INEQUALITIES;
D O I
10.1007/s00605-014-0688-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the bounded holomorphic potentials are pointwise multipliers for the Hardy-Sobolev spaces. As a consequence, we construct nontrivial examples of such multipliers and we give some applications.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 13 条
[1]   WEIGHTED NONLINEAR POTENTIAL-THEORY [J].
ADAMS, DR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (01) :73-94
[2]  
Adams DR, 1996, FUNCTION SPACES POTE
[3]   EXCEPTIONAL SETS FOR HARDY SOBOLEV FUNCTIONS PARA-GREATER-THAN 1 [J].
AHERN, P ;
COHN, W .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (02) :417-453
[4]  
BEATROUS F, 1989, DISS MATH, V276
[5]  
Boe B., CONSTRUCTION M UNPUB
[6]   Carleson measures for weighted Hardy-Sobolev spaces [J].
Cascante, Carme ;
Ortega, Joaquin M. .
NAGOYA MATHEMATICAL JOURNAL, 2007, 186 :29-68
[7]   On Lp-Lq trace inequalities [J].
Cascante, Carme ;
Ortega, Joaquin M. ;
Verbitsky, Igor E. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 :497-511
[8]  
COHN WS, 1995, MICH MATH J, V42, P79
[9]   THIN SETS IN NONLINEAR POTENTIAL-THEORY [J].
HEDBERG, LI ;
WOLFF, TH .
ANNALES DE L INSTITUT FOURIER, 1983, 33 (04) :161-187
[10]  
Maz'ya VG, 2009, GRUNDLEHR MATH WISS, V337, P1