Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient

被引:41
|
作者
Zhong, Wei-Ping [1 ]
Belic, Milivoj [2 ,3 ]
Assanto, Gaetano [4 ]
Malomed, Boris A. [5 ,6 ]
Huang, Tingwen [2 ]
机构
[1] Shunde Polytech, Elect & Informat Engn Dept, Shunde 528300, Guangdong, Peoples R China
[2] Texas A&M Univ Qatar, Doha 23874, Qatar
[3] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia
[4] Univ Rome Roma Tre, NooEL, I-00146 Rome, Italy
[5] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[6] ICFO Inst Ciencies Foton, E-08860 Castelldefels, Barcelona, Spain
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 04期
基金
新加坡国家研究基金会;
关键词
SPECTRAL TRANSFORM; OPTICAL VORTICES; VORTEX BEAM; SOLITONS; BRIGHT;
D O I
10.1103/PhysRevA.84.043801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report approximate analytical solutions to the (3+1)-dimensional spatiotemporal nonlinear Schrodinger equation, with the uniform self-focusing nonlinearity and a variable negative radial diffraction coefficient, in the form of three-dimensional solitons. The model may be realized in artificial optical media, such as left-handed materials and photonic crystals, with the anomalous sign of the group-velocity dispersion (GVD). The same setting may be realized through the interplay of the self-defocusing nonlinearity, normal GVD, and positive variable diffraction. The Hartree approximation is utilized to achieve a suitable separation of variables in the model. Then, an inverse procedure is introduced, with the aim to select a suitable profile of the modulated diffraction coefficient supporting desirable soliton solutions (such as dromions, single-and multilayer rings, and multisoliton clusters). The validity of the analytical approximation and stability of the solutions is tested by means of direct simulations.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Solitons for a generalized variable-coefficient nonlinear Schrodinger equation
    Wang Huan
    Li Biao
    CHINESE PHYSICS B, 2011, 20 (04)
  • [2] Nonlinear Schrodinger equation with spatiotemporal perturbations
    Mertens, Franz G.
    Quintero, Niurka R.
    Bishop, A. R.
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [3] Black and gray soliton interactions and cascade compression in the variable coefficient nonlinear Schrodinger equation
    Musammil, N. M.
    Subha, P. A.
    Nithyanandan, K.
    OPTIK, 2018, 159 : 176 - 188
  • [4] Interactions among solitons for a fifth-order variable coefficient nonlinear Schrodinger equation
    Liu, Suzhi
    Zhou, Qin
    Biswas, Anjan
    Alzahrani, Abdullah Kamis
    Li, Wenjun
    NONLINEAR DYNAMICS, 2020, 100 (03) : 2797 - 2805
  • [5] Solutions of solitary-wave for the variable-coefficient nonlinear Schrodinger equation with two power-law nonlinear terms
    Xin, Le
    Kong, Ying
    Han, Lijia
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (28):
  • [6] Blow-up results and soliton solutions for a generalized variable coefficient nonlinear Schrodinger equation
    Escorcia, J.
    Suazo, E.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 301 : 155 - 176
  • [7] Designable Integrability of the Variable Coefficient Nonlinear Schrodinger Equations
    He, J.
    Li, Y.
    STUDIES IN APPLIED MATHEMATICS, 2011, 126 (01) : 1 - 15
  • [8] On the optical solutions to nonlinear Schrodinger equation with second-order spatiotemporal dispersion
    Rezazadeh, Hadi
    Adel, Waleed
    Eslami, Mostafa
    Tariq, Kalim U.
    Mirhosseini-Alizamini, Seyed Mehdi
    Bekir, Ahmet
    Chu, Yu-Ming
    OPEN PHYSICS, 2021, 19 (01): : 111 - 118
  • [9] Dynamics of vector dark solitons propagation and tunneling effect in the variable coefficient coupled nonlinear Schrodinger equation
    Musammil, N. M.
    Porsezian, K.
    Subha, P. A.
    Nithyanandan, K.
    CHAOS, 2017, 27 (02)
  • [10] AM-GPINN algorithm and its application in a variable-coefficient resonant nonlinear Schrodinger equation
    Qin, Shu-Mei
    Li, Min
    Xu, Tao
    Dong, Shao-Qun
    PHYSICA SCRIPTA, 2023, 98 (02)