An asymptotic for the Hall-Paige conjecture

被引:5
作者
Eberhard, Sean [1 ]
Manners, Freddie [2 ]
Mrazovic, Rudi [3 ]
机构
[1] Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WB, England
[2] UCSD Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
[3] Univ Zagreb, Fac Sci, Dept Math, Zagreb, Croatia
基金
欧洲研究理事会;
关键词
Hall-Paige conjecture; Transversals; Latin squares; MAPPINGS;
D O I
10.1016/j.aim.2022.108423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hall and Paige conjectured in 1955 that a finite group G has a complete mapping if and only if its Sylow 2-subgroups are trivial or noncyclic. This conjecture was proved in 2009 by Wilcox, Evans, and Bray using the classification of finite simple groups and extensive computer algebra. Using a completely different approach motivated by the circle method from analytic number theory, we prove that the number of complete mappings of any group G of order n satisfying the Hall-Paige condition is (e(-1/2) + o(1)) vertical bar G(ab)vertical bar n!(2)/n(n). (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:73
相关论文
共 30 条
[1]  
Aschbacher M, 1990, LECT GIVEN NSA
[2]  
Banach S., 1938, Studia Mathematica, V7, P36, DOI 10.4064/sm-7-1-36-44
[3]   POLYNOMIALS AND MULTILINEAR MAPPINGS IN TOPOLOGICAL VECTOR SPACES [J].
BOCHNAK, J ;
SICIAK, J .
STUDIA MATHEMATICA, 1971, 39 (01) :59-&
[4]  
Bray J.N., 2019, J ALGEBRA
[5]  
Carlen E, 2006, METHODS APPL ANAL, V13, P1
[6]  
Eberhard S., 2017, ARXIV E PRINTS ARXIV
[7]   Additive triples of bijections, or the toroidal semiqueens problem [J].
Eberhard, Sean ;
Manners, Freddie ;
Mrazovic, Rudi .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (02) :441-463
[8]  
Euler L., 1782, Verh. Zeeuwsch. Gennot. Wet. Vliss., V9, P85
[9]  
Evans AB, 2018, DEV MATH, V57, DOI 10.1007/978-3-319-94430-2
[10]   The admissibility of sporadic simple groups [J].
Evans, Anthony B. .
JOURNAL OF ALGEBRA, 2009, 321 (01) :105-116