A p-ADIC HERMITIAN MAASS LIFT

被引:0
作者
Berger, Tobias [1 ]
Klosin, Krzysztof [2 ]
机构
[1] Univ Sheffield, Sch Math & Stat, Hicks Bldg,Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England
[2] CUNY Queens Coll, Dept Math, 65-30 Kissena Blvd, Queens, NY 11367 USA
基金
英国工程与自然科学研究理事会;
关键词
CUSP FORMS; REPRESENTATIONS; CONSTRUCTION; CONJECTURE; FAMILIES; SPACE;
D O I
10.1017/S0017089518000071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For K, an imaginary quadratic field with discriminant -D-K, and associated quadratic Galois character chi(K), Kojima, Gritsenko and Krieg studied a Hermitian Maass lift of elliptic modular cusp forms of level D-K and nebentypus chi(K) via Hermitian Jacobi forms to Hermitian modular forms of level one for the unitary group U(2, 2) split over K. We generalize this (under certain conditions on K and p) to the case of p-oldforms of level pD(K) and character chi(K). To do this, we define an appropriate Hermitian Maass space for general level and prove that it is isomorphic to the space of special Hermitian Jacobi forms. We then show how to adapt this construction to lift a Hida family of modular forms to a p-adic analytic family of automorphic forms in the Maass space of level p.
引用
收藏
页码:85 / 114
页数:30
相关论文
共 36 条
  • [1] p-adic families of Siegel modular cuspforms
    Andreatta, Fabrizio
    Iovita, Adrian
    Pilloni, Vincent
    [J]. ANNALS OF MATHEMATICS, 2015, 181 (02) : 623 - 697
  • [2] [Anonymous], T MAT I STEKLOV
  • [3] [Anonymous], AM MATH SOC
  • [4] [Anonymous], 1985, The Theory of Jacobi Forms
  • [5] [Anonymous], 2010, RAMANUJAN MATH SOC L
  • [6] [Anonymous], 2010, PREPRINT
  • [7] [Anonymous], SCHRIFTENREIHE MATH
  • [8] [Anonymous], 1988, THESIS
  • [9] [Anonymous], 2005, AUTOMORPHIC REPRESEN
  • [10] [Anonymous], 1993, ELEMENTARY THEORY L