Quantum computing models for artificial neural networks

被引:68
作者
Mangini, S. [1 ,2 ]
Tacchino, F. [3 ]
Gerace, D. [1 ]
Bajoni, D. [4 ]
Macchiavello, C. [1 ,2 ,5 ]
机构
[1] Univ Pavia, Dipartimento Fis, Via Bassi 6, I-27100 Pavia, Italy
[2] Ist Nazl Fis Nucl, Sez Pavia, Via Bassi 6, I-27100 Pavia, Italy
[3] IBM Res Zurich, IBM Quantum, Sumerstr 4, CH-8803 Ruschlikon, Switzerland
[4] Univ Pavia, Dipartimento Ingn Ind & Informaz, Via Ferrata 1, I-27100 Pavia, Italy
[5] CNR INO, Largo E Fermi 6, I-50125 Florence, Italy
基金
欧盟地平线“2020”;
关键词
LEARNING ALGORITHM;
D O I
10.1209/0295-5075/134/10002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Neural networks are computing models that have been leading progress in Machine Learning (ML) and Artificial Intelligence (AI) applications. In parallel, the first small-scale quantum computing devices have become available in recent years, paving the way for the development of a new paradigm in information processing. Here we give an overview of the most recent proposals aimed at bringing together these ongoing revolutions, and particularly at implementing the key functionalities of artificial neural networks on quantum architectures. We highlight the exciting perspectives in this context, and discuss the potential role of near-term quantum hardware in the quest for quantum machine learning advantage. Copyright (C) 2021 EPLA
引用
收藏
页数:7
相关论文
共 84 条
[1]   Read the fine print [J].
Aaronson, Scott .
NATURE PHYSICS, 2015, 11 (04) :291-293
[2]  
ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
[3]   Quantum Boltzmann Machine [J].
Amin, Mohammad H. ;
Andriyash, Evgeny ;
Rolfe, Jason ;
Kulchytskyy, Bohdan ;
Melko, Roger .
PHYSICAL REVIEW X, 2018, 8 (02)
[4]  
Andrae ASG., 2015, Challenges, V6, P1, DOI [DOI 10.3390/CHALLE6010117, 10.3390/challe6010117]
[5]   Quantum circuits with many photons on a programmable nanophotonic chip [J].
Arrazola, J. M. ;
Bergholm, V ;
Bradler, K. ;
Bromley, T. R. ;
Collins, M. J. ;
Dhand, I ;
Fumagalli, A. ;
Gerrits, T. ;
Goussev, A. ;
Helt, L. G. ;
Hundal, J. ;
Isacsson, T. ;
Israel, R. B. ;
Izaac, J. ;
Jahangiri, S. ;
Janik, R. ;
Killoran, N. ;
Kumar, S. P. ;
Lavoie, J. ;
Lita, A. E. ;
Mahler, D. H. ;
Menotti, M. ;
Morrison, B. ;
Nam, S. W. ;
Neuhaus, L. ;
Qi, H. Y. ;
Quesada, N. ;
Repingon, A. ;
Sabapathy, K. K. ;
Schuld, M. ;
Su, D. ;
Swinarton, J. ;
Szava, A. ;
Tan, K. ;
Tan, P. ;
Vaidya, V. D. ;
Vernon, Z. ;
Zabaneh, Z. ;
Zhang, Y. .
NATURE, 2021, 591 (7848) :54-+
[6]   Quantum-inspired algorithms in practice [J].
Arrazola, Juan Miguel ;
Delgado, Alain ;
Bardhan, Bhaskar Roy ;
Lloyd, Seth .
QUANTUM, 2020, 4
[7]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[8]  
ASPURU-GUZIK, 2017, ARXIV171111240
[9]  
Banchi L., Quantum, V5, P386
[10]   Training deep quantum neural networks [J].
Beer, Kerstin ;
Bondarenko, Dmytro ;
Farrelly, Terry ;
Osborne, Tobias J. ;
Salzmann, Robert ;
Scheiermann, Daniel ;
Wolf, Ramona .
NATURE COMMUNICATIONS, 2020, 11 (01)