Ultrasonic sculpting of virtual optical waveguides in tissue

被引:36
作者
Chamanzar, Maysamreza [1 ,2 ]
Scopelliti, Matteo Giuseppe [1 ]
Bloch, Julien [3 ]
Do, Ninh [3 ]
Huh, Minyoung [2 ]
Seo, Dongjin [2 ]
Iafrati, Jillian [4 ,5 ]
Sohal, Vikaas S. [4 ,5 ]
Alam, Mohammad-Reza [3 ]
Maharbiz, Michel M. [2 ,6 ,7 ,8 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[2] Univ Calif Berkeley, Elect Engn & Comp Sci Dept, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Mech Engn Dept, Berkeley, CA 94720 USA
[4] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94103 USA
[5] Univ Calif San Francisco, Ctr Integrat Neurosci, San Francisco, CA 94158 USA
[6] Univ Calif Berkeley, Bioengn Dept, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Ctr Neural Engn & Prostheses, Berkeley, CA 94720 USA
[8] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
关键词
OPTOGENETIC STIMULATION; BRAIN ACTIVITY; LASER-BEAM; SCATTERING; LIGHT; INDEX; TIME; INTERFACE; NEURONS; PROBE;
D O I
10.1038/s41467-018-07856-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optical imaging and stimulation are widely used to study biological events. However, scattering processes limit the depth to which externally focused light can penetrate tissue. Optical fibers and waveguides are commonly inserted into tissue when delivering light deeper than a few millimeters. This approach, however, introduces complications arising from tissue damage. In addition, it makes it difficult to steer light. Here, we demonstrate that ultrasound can be used to define and steer the trajectory of light within scattering media by exploiting local pressure differences created by acoustic waves that result in refractive index contrasts. We show that virtual light pipes can be created deep into the tissue (>18 scattering mean free paths). We demonstrate the application of this technology in confining light through mouse brain tissue. This technology is likely extendable to form arbitrary light patterns within tissue, extending both the reach and the flexibility of light-based methods.
引用
收藏
页数:10
相关论文
共 48 条
  • [1] Abaya T V F, 2012, Biomed Opt Express, V3, P3087, DOI 10.1364/BOE.3.003087
  • [2] [Anonymous], 2010, Diagnostic Ultrasound: Physics and Equipment
  • [3] An optical neural interface:: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology
    Aravanis, Alexander M.
    Wang, Li-Ping
    Zhang, Feng
    Meltzer, Leslie A.
    Mogri, Murtaza Z.
    Schneider, M. Bret
    Deisseroth, Karl
    [J]. JOURNAL OF NEURAL ENGINEERING, 2007, 4 (03) : S143 - S156
  • [4] Imaging brain activity with voltage- and calcium-sensitive dyes
    Baker, BJ
    Kosmidis, EK
    Vucinic, D
    Falk, CX
    Cohen, LB
    Djurisic, M
    Zecevic, D
    [J]. CELLULAR AND MOLECULAR NEUROBIOLOGY, 2005, 25 (02) : 245 - 282
  • [5] Acousto-optic tunable filters: fundamentals and applications as applied to chemical analysis techniques
    Bei, L
    Dennis, GI
    Miller, HM
    Spaine, TW
    Carnahan, JW
    [J]. PROGRESS IN QUANTUM ELECTRONICS, 2004, 28 (02) : 67 - 87
  • [6] The Birth of Optogenetics
    Boyden, Edward S.
    [J]. SCIENTIST, 2011, 25 (07) : 30 - 35
  • [7] Chamanzar M, 2015, PROC IEEE MICR ELECT, P682, DOI 10.1109/MEMSYS.2015.7051049
  • [8] NONCOLLINEAR ACOUSTOOPTIC FILTER WITH LARGE ANGULAR APERTURE
    CHANG, IC
    [J]. APPLIED PHYSICS LETTERS, 1974, 25 (07) : 370 - 372
  • [9] Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography
    Chong, Shau Poh
    Merkle, Conrad W.
    Cooke, Dylan F.
    Zhang, Tingwei
    Radhakrishnan, Harsha
    Krubitzer, Leah
    Srinivasan, Vivek J.
    [J]. OPTICS LETTERS, 2015, 40 (21) : 4911 - 4914
  • [10] Deisseroth K, 2011, NAT METHODS, V8, P26, DOI [10.1038/nmeth.f.324, 10.1038/NMETH.F.324]