Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel

被引:15
作者
Escobar, J. D. [1 ]
Delfino, P. M. [1 ]
Ariza-Echeverri, E. A. [1 ,2 ]
Carvalho, F. M. [3 ]
Schell, N. [4 ]
Stark, A. [4 ]
Rodrigues, T. A. [5 ]
Oliveira, J. P. [5 ]
Avila, J. A. [6 ]
Goldenstein, H. [1 ]
Tschiptschin, A. P. [1 ]
机构
[1] Univ Sao Paulo, Met & Mat Engn Dept, Av Prof Mello Moraes 2463, Sao Paulo, Brazil
[2] Univ Tecnolag Pereira, Escuela Tecnol Mecan, Carrera 27 10-02 Alamos, Pereira, Colombia
[3] Inst Technol Res, Met Proc Lab, Av Prof Almeida Prado 532, Sao Paulo, Brazil
[4] Helmholtz Zentrum Hereon, Inst Mat Phys, Max Planck Str 1, D-21502 Geesthacht, Germany
[5] Univ NOVA Lisboa, NOVA Sch Sci & Technol, Dept Mech & Ind Engn, UNIDEMI, P-2829516 Caparica, Portugal
[6] Sao Paulo State Univ, UNESP, Campus Sao Joao da Boa Vista, Sao Joao Da Boa Vista, SP, Brazil
基金
巴西圣保罗研究基金会; 欧盟地平线“2020”;
关键词
Synchrotron X-ray diffraction; Fire-resistant steel; Secondary cementite; Retained austenite; MECHANICAL-PROPERTIES; CARBON-STEEL; BEHAVIOR; MICROSTRUCTURE; PRECIPITATION; STRENGTH; DECOMPOSITION;
D O I
10.1016/j.matchar.2021.111567
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the kinetics of microstructural degradation during the event of a fire is of major relevance to future optimization of fire-resistant steels (FRS). In this work, we use in situ synchrotron X-ray diffraction to assess the rapid thermally-assisted degradation of different starting microstructures, such as (i) ferrite + pearlite; (ii) bainite + retained austenite, and (iii) martensite + retained austenite, during the simulation of a fire cycle in a Fe-0.13C-0.11Cr-0.38Mo-0.04V FRS. Our results show that retained austenite is the most unstable phase, especially when generated by faster cooling rates, decomposing at temperatures as low as 180 degrees C during fire simulations. Bainite and martensite are both unstable and undergo recovery and carbon desaturation via secondary precipitation of cementite. However, bainite is comparatively more stable than martensite since its decomposition starts at 400 degrees C, while for martensite it occurs at 320 degrees C. We also present a methodology to deconvolute the effect of temperature on the increased background and signal intensities of the X-ray spectra, allowing the direct observation of the kinetics of secondary cementite precipitation.
引用
收藏
页数:13
相关论文
共 45 条
  • [1] Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels
    Abe, F
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 : 565 - 569
  • [2] [Anonymous], 2004, NIPPON STEEL TECH RE
  • [3] [Anonymous], 2014, A1077A1077M14 ASTM I, P1, DOI [10.1520/A1077, DOI 10.1520/A1077]
  • [4] [Anonymous], 2014, ISO83411
  • [5] [Anonymous], 2017, JISA1304, P60
  • [6] [Anonymous], 2020, ASTME11920 ASTM INT
  • [7] A micromechanical approach to model the bake hardening effect for low carbon steels
    Berbenni, S
    Favier, V
    Lemoine, X
    Berveiller, M
    [J]. SCRIPTA MATERIALIA, 2004, 51 (04) : 303 - 308
  • [8] Bhadeshia H., 2006, STEEL
  • [9] Atomic scale observations of bainite transformation in a high carbon high silicon steel
    Caballero, F. G.
    Miller, M. K.
    Babu, S. S.
    Garcia-Mateo, C.
    [J]. ACTA MATERIALIA, 2007, 55 (01) : 381 - 390
  • [10] Carbon supersaturation of ferrite in a nanocrystalline bainitic steel
    Caballero, F. G.
    Miller, M. K.
    Garcia-Mateo, C.
    [J]. ACTA MATERIALIA, 2010, 58 (07) : 2338 - 2343