Seismic waves in medium with poroelastic/elastic interfaces: a two-dimensional P-SV finite-difference modelling

被引:6
作者
Gregor, David [1 ]
Moczo, Peter [1 ,2 ]
Kristek, Jozef [1 ,2 ]
Mesgouez, Arnaud [3 ]
Lefeuve-Mesgouez, Gaelle [3 ]
Morency, Christina [4 ]
Diaz, Julien [5 ]
Kristekova, Miriam [1 ,2 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Mlynska Dolina F1, Bratislava 84248, Slovakia
[2] Slovak Acad Sci, Earth Sci Inst, Dubravska Cesta 9, Bratislava 84528, Slovakia
[3] Avignon Univ, UMR EMMAH, INRAE, BP21239, F-84911 Avignon, France
[4] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA
[5] Univ Pau & Pays Adour, INRIA, BP 1155, F-64013 Pau, France
关键词
Permeability and porosity; Numerical approximations and analysis; Computational seismology; Earthquake ground motions; Theoretical seismology; Wave propagation; DISCONTINUOUS GALERKIN METHOD; EARTHQUAKE GROUND MOTION; SPECTRAL-ELEMENT; BOUNDARY-CONDITIONS; ELASTIC-WAVES; PROPAGATION; 2D; SIMULATIONS; REFLECTION; CRITERIA;
D O I
10.1093/gji/ggab357
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a new methodology of the finite-difference (FD) modelling of seismic wave propagation in a strongly heterogeneous medium composed of poroelastic (P) and (strictly) elastic (E) parts. The medium can include P/P, P/E and E/E material interfaces of arbitrary shapes. The poroelastic part can be with (i) zero resistive friction, (ii) non-zero constant resistive friction or (iii) JKD model of the frequency-dependent permeability and resistive friction. Our FD scheme is capable of subcell resolution: a material interface can have an arbitrary position in the spatial grid. The scheme keeps computational efficiency of the scheme for a smoothly and weakly heterogeneous medium (medium without material interfaces). Numerical tests against independent analytical, semi-analytical and spectral-element methods prove the efficiency and accuracy of our FD modelling. In numerical examples, we indicate effect of the P/E interfaces for the poroelastic medium with a constant resistive friction and medium with the JKD model of the frequency-dependent permeability and resistive friction. We address the 2-D P-SV problem. The approach can be readily extended to the 3-D problem.
引用
收藏
页码:551 / 588
页数:38
相关论文
共 50 条
  • [11] SEISMIC BOUNDARY-CONDITIONS FOR POROUS-MEDIA
    DELACRUZ, V
    SPANOS, TJT
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1989, 94 (B3): : 3025 - 3029
  • [12] Deresiewicz H., 1963, B SEISMOL SOC AM, V53, P783, DOI [10.1785/BSSA0530040783, DOI 10.1785/BSSA0530040783]
  • [13] Diaz J., 2008, 6591 INRIA
  • [14] Analytical Solution for Waves Propagation in Heterogeneous Acoustic/Porous Media. Part I: The 2D Case
    Diaz, Julien
    Ezziani, Abdelaaziz
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (01) : 171 - 194
  • [15] SEISMIC-WAVE PROPAGATION IN A VERY PERMEABLE WATER-SATURATED SURFACE-LAYER
    GELI, L
    BARD, PY
    SCHMITT, DP
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B8): : 7931 - 7944
  • [16] Subcell-resolution finite-difference modelling of seismic waves in Biot and JKD poroelastic media
    Gregor, David
    Moczo, Peter
    Kristek, Jozef
    Mesgouez, Arnaud
    Lefeuve-Mesgouez, Gaelle
    Kristekova, Miriam
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 224 (02) : 760 - 794
  • [17] The Parameter Averaging Technique in Finite-Difference Modeling of Elastic Waves in Combined Structures with Solid, Fluid and Porous Subregions
    Guan, Wei
    Hu, Hengshan
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (03) : 695 - 715
  • [18] Hansen N.R, 2018, EXPORKIT CODE
  • [19] He XJ, 2021, GEOPHYSICS, V86, pT261, DOI [10.1190/geo2020-0707.1, 10.1190/GEO2020-0707.1]
  • [20] Perfectly matched absorbing layer for modelling transient wave propagation in heterogeneous poroelastic media
    He, Yanbin
    Chen, Tianning
    Gao, Jinghuai
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2020, 17 (01) : 18 - 34