Seismic waves in medium with poroelastic/elastic interfaces: a two-dimensional P-SV finite-difference modelling

被引:6
作者
Gregor, David [1 ]
Moczo, Peter [1 ,2 ]
Kristek, Jozef [1 ,2 ]
Mesgouez, Arnaud [3 ]
Lefeuve-Mesgouez, Gaelle [3 ]
Morency, Christina [4 ]
Diaz, Julien [5 ]
Kristekova, Miriam [1 ,2 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Mlynska Dolina F1, Bratislava 84248, Slovakia
[2] Slovak Acad Sci, Earth Sci Inst, Dubravska Cesta 9, Bratislava 84528, Slovakia
[3] Avignon Univ, UMR EMMAH, INRAE, BP21239, F-84911 Avignon, France
[4] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA
[5] Univ Pau & Pays Adour, INRIA, BP 1155, F-64013 Pau, France
关键词
Permeability and porosity; Numerical approximations and analysis; Computational seismology; Earthquake ground motions; Theoretical seismology; Wave propagation; DISCONTINUOUS GALERKIN METHOD; EARTHQUAKE GROUND MOTION; SPECTRAL-ELEMENT; BOUNDARY-CONDITIONS; ELASTIC-WAVES; PROPAGATION; 2D; SIMULATIONS; REFLECTION; CRITERIA;
D O I
10.1093/gji/ggab357
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a new methodology of the finite-difference (FD) modelling of seismic wave propagation in a strongly heterogeneous medium composed of poroelastic (P) and (strictly) elastic (E) parts. The medium can include P/P, P/E and E/E material interfaces of arbitrary shapes. The poroelastic part can be with (i) zero resistive friction, (ii) non-zero constant resistive friction or (iii) JKD model of the frequency-dependent permeability and resistive friction. Our FD scheme is capable of subcell resolution: a material interface can have an arbitrary position in the spatial grid. The scheme keeps computational efficiency of the scheme for a smoothly and weakly heterogeneous medium (medium without material interfaces). Numerical tests against independent analytical, semi-analytical and spectral-element methods prove the efficiency and accuracy of our FD modelling. In numerical examples, we indicate effect of the P/E interfaces for the poroelastic medium with a constant resistive friction and medium with the JKD model of the frequency-dependent permeability and resistive friction. We address the 2-D P-SV problem. The approach can be readily extended to the 3-D problem.
引用
收藏
页码:551 / 588
页数:38
相关论文
共 50 条
  • [1] Stability of discrete schemes of Biot's poroelastic equations
    Alkhimenkov, Y.
    Khakimova, L.
    Podladchikov, Y. Y.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 225 (01) : 354 - 377
  • [2] Resolving Wave Propagation in Anisotropic Poroelastic Media Using Graphical Processing Units (GPUs)
    Alkhimenkov, Yury
    Rass, Ludovic
    Khakimova, Lyudmila
    Quintal, Beatriz
    Podladchikov, Yury
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (07)
  • [3] CONFIRMATION OF BIOTS THEORY
    BERRYMAN, JG
    [J]. APPLIED PHYSICS LETTERS, 1980, 37 (04) : 382 - 384
  • [5] Blacker TedD., 1994, CUBIT MESH GENERATIO, V1
  • [6] Blanc E., 2013, THESIS AIX MARSEILLE, P157
  • [7] Bourbie T., 1987, ACOUSTICS POROUS MED
  • [8] Carcione J. M., 1995, Journal of Computational Acoustics, V3, P261, DOI 10.1142/S0218396X95000136
  • [9] Propagation of plane P-waves at interface between elastic solid and unsaturated poroelastic medium
    Chen, Wei-yun
    Xia, Tang-dai
    Chen, Wei
    Zhai, Chao-jiao
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2012, 33 (07) : 829 - 844
  • [10] Wave propagation in the poro-viscoelastic orthorhombic two-phase media: plane-wave theory and wavefield simulation
    Cheng, Shijun
    Mao, Weijian
    Zhang, Qingchen
    Xu, Qianru
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 227 (01) : 99 - 122