Causation and causal inference in epidemiology

被引:740
作者
Rothman, KJ
Greenland, S
机构
[1] Boston Univ, Med Ctr, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02118 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
关键词
D O I
10.2105/AJPH.2004.059204
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Concepts of cause and causal inference are largely self-taught from early learning experiences. A model of causation that describes causes in terms of sufficient causes and their component causes illuminates important principles such as multicausality, the dependence of the strength of component causes on the prevalence of complementary component causes, and interaction between component causes. Philosophers agree that causal propositions cannot be proved, and find flaws or practical limitations in all philosophies of causal inference. Hence, the role of logic, belief, and observation in evaluating causal propositions is not settled. Causal inference in epidemiology is better viewed as an exercise in measurement of an effect rather than as a criterion-guided process for deciding whether an effect is present or not.
引用
收藏
页码:S144 / S150
页数:7
相关论文
共 50 条
  • [41] Epidemiology and causation
    Leen De Vreese
    [J]. Medicine, Health Care and Philosophy, 2009, 12 : 345 - 353
  • [42] Epidemiology and causation
    De Vreese, Leen
    [J]. MEDICINE HEALTH CARE AND PHILOSOPHY, 2009, 12 (03) : 345 - 353
  • [43] Causation in epidemiology
    Parascandola, M
    Weed, DL
    [J]. JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2001, 55 (12) : 905 - 912
  • [44] The Consistency Assumption for Causal Inference in Social Epidemiology: When a Rose Is Not a Rose
    David H. Rehkopf
    M. Maria Glymour
    Theresa L. Osypuk
    [J]. Current Epidemiology Reports, 2016, 3 (1) : 63 - 71
  • [45] Models of causal inference: Advances in and the obstacles to the growing use of statistics in epidemiology
    Czeresnia, D
    deAlbuquerque, MD
    [J]. REVISTA DE SAUDE PUBLICA, 1995, 29 (05): : 415 - 423
  • [46] Causal Inference with Case-Only Studies in Injury Epidemiology Research
    Rundle, Andrew G.
    Bader, Michael D. M.
    Branas, Charles C.
    Lovasi, Gina S.
    Mooney, Stephen J.
    Morrison, Christopher N.
    Neckerman, Kathryn M.
    [J]. CURRENT EPIDEMIOLOGY REPORTS, 2022, 9 (04) : 223 - 232
  • [47] The tale wagged by the DAG: broadening the scope of causal inference and explanation for epidemiology
    Krieger, Nancy
    Smith, George Davey
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2016, 45 (06) : 1787 - 1808
  • [48] Causal Inference with Case-Only Studies in Injury Epidemiology Research
    Andrew G. Rundle
    Michael D. M. Bader
    Charles C. Branas
    Gina S. Lovasi
    Stephen J. Mooney
    Christopher N. Morrison
    Kathryn M. Neckerman
    [J]. Current Epidemiology Reports, 2022, 9 : 223 - 232
  • [49] The (mis)estimation of neighborhood effects: causal inference for a practicable social epidemiology
    Oakes, JM
    [J]. SOCIAL SCIENCE & MEDICINE, 2004, 58 (10) : 1929 - 1952
  • [50] Regression Discontinuity Designs in Epidemiology Causal Inference Without Randomized Trials
    Bor, Jacob
    Moscoe, Ellen
    Mutevedzi, Portia
    Newell, Marie-Louise
    Baernighausen, Till
    [J]. EPIDEMIOLOGY, 2014, 25 (05) : 729 - 737