Causation and causal inference in epidemiology

被引:740
作者
Rothman, KJ
Greenland, S
机构
[1] Boston Univ, Med Ctr, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02118 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
关键词
D O I
10.2105/AJPH.2004.059204
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Concepts of cause and causal inference are largely self-taught from early learning experiences. A model of causation that describes causes in terms of sufficient causes and their component causes illuminates important principles such as multicausality, the dependence of the strength of component causes on the prevalence of complementary component causes, and interaction between component causes. Philosophers agree that causal propositions cannot be proved, and find flaws or practical limitations in all philosophies of causal inference. Hence, the role of logic, belief, and observation in evaluating causal propositions is not settled. Causal inference in epidemiology is better viewed as an exercise in measurement of an effect rather than as a criterion-guided process for deciding whether an effect is present or not.
引用
收藏
页码:S144 / S150
页数:7
相关论文
共 50 条
  • [31] Marshall Joffe's Contributions to Causal Inference, Biostatistics, and Epidemiology
    Isenberg, Dane
    Kennedy, Edward H.
    Landis, J. Richard
    Mitra, Nandita
    Robins, James M.
    Roy, Jason
    Stephens-Shields, Alisa J.
    Yang, Wei
    Small, Dylan S.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2024, 193 (04) : 563 - 576
  • [32] Re: Causality and causal inference in epidemiology: the need for a pluralistic approach
    VanderWeele, Tyler J.
    Hernan, Miguel A.
    Tchetgen, Eric J. Tchetgen
    Robins, James M.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2016, 45 (06) : 2199 - 2200
  • [33] Causal inference algorithms can be useful in life course epidemiology
    la Bastide-van Gemert, Sacha
    Stolk, Ronald P.
    van den Heuvel, Edwin R.
    Fidler, Vaclav
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2014, 67 (02) : 190 - 198
  • [34] Causal inference challenges in social epidemiology: Bias, specificity, and imagination
    Glymour, M. Maria
    Rudolph, Kara E.
    SOCIAL SCIENCE & MEDICINE, 2016, 166 : 258 - 265
  • [35] FORMALIZING THE ROLE OF COMPLEX SYSTEMS APPROACHES IN CAUSAL INFERENCE AND EPIDEMIOLOGY
    Marshall, Brandon
    Galea, Sandro
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 : S18 - S18
  • [36] Win-Win: Reconciling Social Epidemiology and Causal Inference
    Galea, Sandro
    Hernan, Miguel A.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2020, 189 (03) : 167 - 170
  • [37] Causal Inference in Cancer Epidemiology: What Is the Role of Mendelian Randomization?
    Yarmolinsky, James
    Wade, Kaitlin H.
    Richmond, Rebecca C.
    Langdon, Ryan J.
    Bull, Caroline J.
    Tilling, Kate M.
    Relton, Caroline L.
    Lewis, Sarah J.
    Smith, George Davey
    Martin, Richard M.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2018, 27 (09) : 995 - 1010
  • [38] Strengthening causal inference in cardiovascular epidemiology through Mendelian randomization
    Davey Smith, George
    Timpson, Nic
    Ebrahim, Shah
    ANNALS OF MEDICINE, 2008, 40 (07) : 524 - 541
  • [39] A Time and Place for Causal Inference Methods in Perinatal and Paediatric Epidemiology
    Ahrens, Katherine A.
    Schisterman, Enrique F.
    PAEDIATRIC AND PERINATAL EPIDEMIOLOGY, 2013, 27 (03) : 258 - 262
  • [40] Causation in Epidemiology
    McGwin, Gerald, Jr.
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2010, 150 (05) : 599 - 601