A deep learning framework identifies dimensional representations of Alzheimer's Disease from brain structure

被引:23
作者
Yang, Zhijian [1 ,2 ]
Nasrallah, Ilya M. [1 ,3 ]
Shou, Haochang [1 ,4 ]
Wen, Junhao [1 ,3 ]
Doshi, Jimit [1 ,3 ]
Habes, Mohamad [1 ,5 ,6 ]
Erus, Guray [1 ,3 ]
Abdulkadir, Ahmed [1 ,3 ]
Resnick, Susan M. [7 ]
Albert, Marilyn S. [8 ]
Maruff, Paul [9 ]
Fripp, Jurgen [10 ]
Morris, John C. [11 ]
Wolk, David A. [1 ,12 ,13 ]
Davatzikos, Christos [1 ,3 ]
机构
[1] Univ Penn, Ctr Biomed Image Comp & Analyt, Philadelphia, PA 19104 USA
[2] Univ Penn, Grad Grp Appl Math & Computat Sci, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[5] Univ Texas Hlth Sci Ctr San Antonio, Glenn Biggs Inst Alzheimers & Neurodegenerat Dis, Neuroimage Analyt Lab NAL, San Antonio, TX 78229 USA
[6] Univ Texas Hlth Sci Ctr San Antonio, Glenn Biggs Inst Alzheimers & Neurodegenerat Dis, Biggs Inst Neuroimaging Core BINC, San Antonio, TX 78229 USA
[7] NIA, Lab Behav Neurosci, Baltimore, MD 21224 USA
[8] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD 21205 USA
[9] Univ Melbourne, Florey Inst Neurosci & Mental Hlth, Melbourne, Vic, Australia
[10] Australian E Hlth Res Ctr CSIRO, CSIRO Hlth & Biosecur, Brisbane, Qld, Australia
[11] Washington Univ, Knight Alzheimer Dis Res Ctr, St Louis, MO USA
[12] Univ Penn, Alzheimers Dis Res Ctr, Philadelphia, PA 19104 USA
[13] Univ Penn, Dept Neurol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
COMPOSITE SCORE; OLDER-ADULTS; ATROPHY; AD; PATTERNS; SUBTYPES; MILD; COGNITION; VOLUME;
D O I
10.1038/s41467-021-26703-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity contrasted against normal brain structure, to identify disease subtypes through neuroimaging signatures. When applied to regional volumes derived from T1-weighted MRI (two studies; 2,832 participants; 8,146 scans) including cognitively normal individuals and those with cognitive impairment and dementia, Smile-GAN identified four patterns or axes of neuro-degeneration. Applying this framework to longitudinal data revealed two distinct progression pathways. Measures of expression of these patterns predicted the pathway and rate of future neurodegeneration. Pattern expression offered complementary performance to amyloid/tau in predicting clinical progression. These deep-learning derived biomarkers offer potential for precision diagnostics and targeted clinical trial recruitment.
引用
收藏
页数:15
相关论文
共 47 条
[1]   Texture measures combination for improved meningioma classification of histopathological images [J].
Al-Kadi, Omar S. .
PATTERN RECOGNITION, 2010, 43 (06) :2043-2053
[2]   2018 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2018, 14 (03) :367-425
[3]   Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls [J].
Arbabshirani, Mohammad R. ;
Plis, Sergey ;
Sui, Jing ;
Calhoun, Vince D. .
NEUROIMAGE, 2017, 145 :137-165
[4]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[5]   Two distinc neuroanatomica subtypes of schizophrenia revealed using machine learning [J].
Chand, Ganesh B. ;
Dwyer, Dominic B. ;
Erus, Guray ;
Sotiras, Aristeidis ;
Varol, Erdem ;
Srinivasan, Dhivya ;
Doshi, Jimit ;
Pomponio, Raymond ;
Pigoni, Alessandro ;
Dazzan, Paola ;
Kahn, Rene S. ;
Schnack, Hugo G. ;
Zanetti, Marcus V. ;
Meisenzahl, Eva ;
Busatto, Geraldo F. ;
Crespo-Facorro, Benedicto ;
Pantelis, Christos ;
Wood, Stephen J. ;
Zhuo, Chuanjun ;
Shinohara, Russell T. ;
Shou, Haochang ;
Fan, Yong ;
Gur, Ruben C. ;
Gur, Raquel E. ;
Satterthwaite, Theodore D. ;
Koutsouleris, Nikolaos ;
Wolf, Daniel H. ;
Davatzikos, Christos .
BRAIN, 2020, 143 :1027-1038
[6]  
Chen X, 2016, ADV NEUR IN, V29
[7]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173
[8]   Development and assessment of a composite score for memory in the Alzheimer's Disease Neuroimaging Initiative (ADNI) [J].
Crane, Paul K. ;
Carle, Adam ;
Gibbons, Laura E. ;
Insel, Philip ;
Mackin, R. Scott ;
Gross, Alden ;
Jones, Richard N. ;
Mukherjee, Shubhabrata ;
Curtis, S. McKay ;
Harvey, Danielle ;
Weiner, Michael ;
Mungas, Dan .
BRAIN IMAGING AND BEHAVIOR, 2012, 6 (04) :502-516
[9]   Voxel-based morphometry using the RAVENS maps: Methods and validation using simulated longitudinal atrophy [J].
Davatzikos, C ;
Genc, A ;
Xu, DR ;
Resnick, SM .
NEUROIMAGE, 2001, 14 (06) :1361-1369
[10]   Longitudinal progression of Alzheimers-like patterns of atrophy in normal older adults: the SPARE-AD index [J].
Davatzikos, Christos ;
Xu, Feng ;
An, Yang ;
Fan, Yong ;
Resnick, Susan M. .
BRAIN, 2009, 132 :2026-2035