Solving calculus of variation problems via multiquadric radial basis function method with optimal shape parameter

被引:0
作者
Alipanah, Amjad [1 ]
Kasnazani, Azad [1 ]
机构
[1] Univ Kurdistan, Dept Appl Math, Sanandaj, Iran
关键词
Brachistochrone problem; calculus of variation; error analysis; multiquadric radial basis function; numerical results; RBF; DATA APPROXIMATION SCHEME; INTERPOLATION; EQUATIONS;
D O I
10.1515/ijnsns-2018-0220
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present callocation method for solving the problems in the calculus of variation (CV) using multiquadratic radial basis functions (MQRBFs). In this method we use the Gauss quadrature rule for approximating the integral in CV problems. The effects of the shape parameter of MQRBFs on the convergence of the method have been discussed. Illustrative examples are included to evaluate the capability of the proposed method.
引用
收藏
页码:273 / 281
页数:9
相关论文
共 31 条