Retention of the Stemness of Mouse Adipose-Derived Stem Cells by Their Expansion on Human Bone Marrow Stromal Cell-Derived Extracellular Matrix

被引:0
|
作者
Xiong, Yao [1 ]
He, Jing [2 ]
Zhang, Wenjie [1 ,3 ]
Zhou, Guangdong [1 ,3 ]
Cao, Yilin [1 ,3 ]
Liu, Wei [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ Sch Med, Shanghai Peoples Hosp 9, Dept Plast & Reconstruct Surg, Shanghai Key Lab Tissue Engn, Shanghai 200011, Peoples R China
[2] Tongji Univ Sch Med, Dept Anat & Neurobiol, Shanghai, Peoples R China
[3] Natl Tissue Engn Ctr China, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
PROGENITOR CELLS; EX-VIVO; TISSUE; DIFFERENTIATION; CULTURE;
D O I
10.1089/ten.tea.2014.0539
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Mesenchymal stem cells (MSCs) usually lose their stemness during in vitro expansion as they are deprived of their niche environment. Cell-extracellular matrix (ECM) interaction is known to play important roles in preserving the stemness of the cells in their stem cell niche environment. Previously, coating with bone marrow MSC (BMSC)-derived ECM was found able to maintain the differentiation potential of in vitro cultured MSCs. This study aimed to determine if this ECM coating could also maintain the stemness of cultured murine adipose-derived stem cells (ASCs) using a regular culture flask as a control. Cells were expanded in ECM-coated and ECM-noncoated flasks for two and four passages and then harvested for various analyses. The results showed that ASCs exhibited fibroblast-like spindle morphology in ECM-coated flasks, whereas ASCs gradually spread and enlarged in the ECM-noncoated flasks. After three and five passages, both groups of cells exhibited similar cytokinetics in the MSC culture medium (MesenPRO RS (TM) Medium). However, when cultured in Dulbecco's modified Eagles medium (DMEM) plus 10% fetal bovine serum, coating group cells exhibited more potent proliferation than control group cells with a significant difference in both passages 3 and 5 (p<0.01). When seeded at low density (500 cells/10-cm dish), coating group cells formed significantly more and larger sized cell colonies than control group cells with significant difference in cell colony numbers between two groups (p<0.05). In addition, coated colony cells were much smaller and more compactly arranged compared to control colony cells. Furthermore, ASCs expanded in coated flasks exhibited greater potentials for adipogenic, osteogenic, and chondrogenic differentiations than the cells expanded in regular flasks. Quantitatively, the Oil Red O staining area, Alizarin staining area, and Toluidine Blue staining area were all significantly larger than the respective staining areas of control cells (p<0.05). Real-time polymerase chain reaction also revealed significantly higher gene expression levels of peroxisome proliferator-activated receptor gamma (PPAR gamma), adipocyte protein 2 (aP2), CCAAT/enhancer-binding protein (C/EBP), Rux2, osteocalcin, Sox9, collagen II, and aggrecan in ECM-coated group cells than in control group cells (p<0.05). Collectively, these results suggest that human BMSC decellular ECM coating helps to preserve the stemness of cultured murine ASCs.
引用
收藏
页码:1886 / 1894
页数:9
相关论文
共 50 条
  • [41] Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion
    Yu, Claire
    Kornmuller, Anna
    Brown, Cody
    Hoare, Todd
    Flynn, Lauren E.
    BIOMATERIALS, 2017, 120 : 66 - 80
  • [42] Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells
    Fotia, Caterina
    Massa, Annamaria
    Boriani, Filippo
    Baldini, Nicola
    Granchi, Donatella
    CYTOTECHNOLOGY, 2015, 67 (06) : 1073 - 1084
  • [43] Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells
    Caterina Fotia
    Annamaria Massa
    Filippo Boriani
    Nicola Baldini
    Donatella Granchi
    Cytotechnology, 2015, 67 : 1073 - 1084
  • [44] PLGA Containing Human Adipose-Derived Stem Cell-Derived Extracellular Vesicles Accelerates the Repair of Alveolar Bone Defects via Transfer of CGRP
    Yang, Yang
    Zhang, Bo
    Yang, Yufan
    Peng, Bibo
    Ye, Rui
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2022, 2022
  • [45] Adipose-derived stem cells derived decellularized extracellular matrix enabled skin regeneration and remodeling
    Zhang, Jin
    Xiang, Yang
    Yang, Quyang
    Chen, Jiqiu
    Liu, Lei
    Jin, Jian
    Zhu, Shihui
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [46] Chondrogenic potential of human bone marrow mesenchymal stem cells and adipose-derived mesenchymal stem cells.
    Danisovic, L.
    Lesny, P.
    Jendelova, P.
    Teyssler, P.
    Havlas, V.
    Fujerikova, G.
    Sykova, F.
    CYTOTHERAPY, 2006, 8
  • [47] Stem molecular signature of adipose-derived stromal cells
    Peroni, Daniele
    Scambi, Ilaria
    Pasini, Annalisa
    Lisi, Veronica
    Bifari, Francesco
    Krampera, Mauro
    Rigotti, Gino
    Sbarbati, Andrea
    Galie, Mirco
    EXPERIMENTAL CELL RESEARCH, 2008, 314 (03) : 603 - 615
  • [48] Platelet-Derived Growth Factor BB Enhances Osteogenesis of Adipose-Derived But Not Bone Marrow-Derived Mesenchymal Stromal/Stem Cells
    Hung, Ben P.
    Hutton, Daphne L.
    Kozielski, Kristen L.
    Bishop, Corey J.
    Naved, Bilal
    Green, Jordan J.
    Caplan, Arnold I.
    Gimble, Jeffrey M.
    Dorafshar, Amir H.
    Grayson, Warren L.
    STEM CELLS, 2015, 33 (09) : 2773 - 2784
  • [49] Comparison of Adipose-derived Stem Cells and Bone Marrow-derived Stem Cells in Cell Transplantation Therapy against Brain Ischemia
    Ikegame, Y.
    Yamashita, K.
    Hayashi, S.
    Yo, F.
    Nakashima, S.
    Mizuno, H.
    Yoshimura, S.
    Iwama, T.
    TISSUE ENGINEERING PART A, 2009, 15 (03) : 716 - 717
  • [50] Thiolated Adipose-Derived Extraceullar Matrix Based Hydrogel For Maintenance of Pluripotency in Human Adipose-Derived Stem Cells
    Poche, J. N.
    Hayes, D. J.
    TISSUE ENGINEERING PART A, 2016, 22 : S146 - S146