Inverse Design of Nanoparticles Using Multi-Target Machine Learning

被引:19
作者
Li, Sichao [1 ]
Barnard, Amanda S. [1 ]
机构
[1] Australian Natl Univ, Sch Comp, Acton, ACT 2601, Australia
关键词
inverse design; machine learning; nanoparticles; ABSOLUTE ERROR MAE; STRUCTURE/PROPERTY RELATIONSHIPS; CLASSIFICATION; REGRESSION; MODELS; RMSE;
D O I
10.1002/adts.202100414
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study a new approach to inverse design is presented that draws on the multi-functionality of nanomaterials and uses sets of properties to predict a unique nanoparticle structure. This approach involves multi-target regression and uses a precursory forward structure/property prediction to focus the model on the most important characteristics before inverting the problem and simultaneously predicting multiple structural features of a single nanoparticle. The workflow is general, as demonstrated on two nanoparticle data sets, and can rapidly predict property/structure relationships to guide further research and development without the need for additional optimization or high-throughput sampling.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Predicting rice phenotypes with meta and multi-target learning
    Oghenejokpeme I. Orhobor
    Nickolai N. Alexandrov
    Ross D. King
    Machine Learning, 2020, 109 : 2195 - 2212
  • [32] Multi-Target Feature Selection with Adaptive Graph Learning and Target Correlations
    Zhou, Yujing
    He, Dubo
    MATHEMATICS, 2024, 12 (03)
  • [33] Inverse Design of Fe-Based Bulk Metallic Glasses Using Machine Learning
    Jeon, Junhyub
    Seo, Namhyuk
    Kim, Hwi-Jun
    Lee, Min-Ha
    Lim, Hyun-Kyu
    Son, Seung Bae
    Lee, Seok-Jae
    METALS, 2021, 11 (05)
  • [34] Assessing micrometastases as a target for nanoparticles using 3D microscopy and machine learning
    Kingston, Benjamin R.
    Syed, Abdullah Muhammad
    Ngai, Jessica
    Sindhwani, Shrey
    Chan, Warren C. W.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (30) : 14937 - 14946
  • [35] Multi-target dopamine D3 receptor modulators: Actionable knowledge for drug design from molecular dynamics and machine learning
    Ferraro, Mariarosaria
    Decherchi, Sergio
    De Simone, Alessio
    Recanatini, Maurizio
    Cavalli, Andrea
    Bottegoni, Giovanni
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2020, 188
  • [36] Multi-Target Regression with Rule Ensembles
    Aho, Timo
    Zenko, Bernard
    Dzeroski, Saso
    Elomaa, Tapio
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 2367 - 2407
  • [37] Solving the Inverse Design Problem of Electrical Fuse With Machine Learning
    Huang, Xinjian
    Li, Ziniu
    Liu, Zhiyuan
    Xiang, Bin
    Geng, Yingsan
    Wang, Jianhua
    IEEE ACCESS, 2020, 8 : 74137 - 74144
  • [38] Inverse System Design Using Machine Learning: The Raman Amplifier Case
    Zibar, Darko
    Rosa Brusin, Ann Margareth
    de Moura, Uiara C.
    Da Ros, Francesco
    Curri, Vittorio
    Carena, Andrea
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (04) : 736 - 753
  • [39] Improvement of TCAD Augmented Machine Learning Using Autoencoder for Semiconductor Variation Identification and Inverse Design
    Mehta, Kashyap
    Raju, Sophia Susan
    Xiao, Ming
    Wang, Boyan
    Zhang, Yuhao
    Wong, Hiu Yung
    IEEE ACCESS, 2020, 8 : 143519 - 143529
  • [40] Inverse Design of a Dual-Band Reflective Polarizing Surface Using Generative Machine Learning
    Naseri, Parinaz
    Goussetis, George
    Fonseca, Nelson J. G.
    Hum, Sean, V
    2022 16TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2022,